Вы можете использовать новый модуль nltk.lm
.Вот пример, сначала получите некоторые данные и токенизируйте их:
import os
import requests
import io #codecs
from nltk import word_tokenize, sent_tokenize
# Text version of https://kilgarriff.co.uk/Publications/2005-K-lineer.pdf
if os.path.isfile('language-never-random.txt'):
with io.open('language-never-random.txt', encoding='utf8') as fin:
text = fin.read()
else:
url = "https://gist.githubusercontent.com/alvations/53b01e4076573fea47c6057120bb017a/raw/b01ff96a5f76848450e648f35da6497ca9454e4a/language-never-random.txt"
text = requests.get(url).content.decode('utf8')
with io.open('language-never-random.txt', 'w', encoding='utf8') as fout:
fout.write(text)
# Tokenize the text.
tokenized_text = [list(map(str.lower, word_tokenize(sent)))
for sent in sent_tokenize(text)]
Затем моделирование языка:
# Preprocess the tokenized text for 3-grams language modelling
from nltk.lm.preprocessing import padded_everygram_pipeline
from nltk.lm import MLE
n = 3
train_data, padded_sents = padded_everygram_pipeline(n, tokenized_text)
model = MLE(n) # Lets train a 3-grams maximum likelihood estimation model.
model.fit(train_data, padded_sents)
Чтобы получить счет:
model.counts['language'] # i.e. Count('language')
model.counts[['language']]['is'] # i.e. Count('is'|'language')
model.counts[['language', 'is']]['never'] # i.e. Count('never'|'language is')
Дляполучить вероятности:
model.score('is', 'language'.split()) # P('is'|'language')
model.score('never', 'language is'.split()) # P('never'|'language is')
При загрузке ноутбука на платформе Kaggle есть некоторые странности, но в какой-то момент этот ноутбук должен дать хороший обзор nltk.lm
модуля https://www.kaggle.com/alvations/n-gram-language-model-with-nltk