Я строю учебный классификатор с моим набором данных.Я кодирую один горячий ярлык с TensorFlow.Добавьте данные изображения массива и одну горячую метку в данные обучения, а затем в данные тестирования.Но я получаю ошибку формы с тензорным потоком.Как новичок я попытался найти это и попытался решить это сам, но не смог.
CODE
from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf
import numpy as np
import scipy.io as cio
import os
import matplotlib.pyplot as plt
import matplotlib.image as mpg
from random import shuffle
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
import cv2
a = cio.loadmat("D:/compCarsThesisData/data/misc/make_model_name.mat")
images = "D:/compCarsThesisData/data/image/"
IMG_SIZE = 64
MODEL_NAME = 'Classification'
LR = 1e-3
b = a['make_names']
# c = b.reshape(163,)
d = []
for i in range(b.size):
d.append(b[i][0][0])
print(d)
labels_dic = {v: k for v, k in enumerate(d)}
print(labels_dic)
indices = np.arange(163)
depth = 163
y = tf.one_hot(indices,depth)
# print(y)
sess = tf.Session()
result = sess.run(y)
print(result)
# labels = []
# labels.append((result,labels_dic))
# print(labels)
for root, _, files in os.walk(images):
cdp = os.path.abspath(root)
for f in files:
name,ext = os.path.splitext(f)
if ext == ".jpg":
cip = os.path.join(cdp,f)
ci = mpg.imread(cip)
image = cv2.cv2.resize(ci,(IMG_SIZE,IMG_SIZE))
image = np.array(image)
print(image)
training_data = []
training_data.append([np.array(image),result])
print("TrainingData",training_data)
shuffle(training_data)
np.save('training_data_with_One_Hot', training_data)
testing_data = []
testing_data.append([np.array(image),result])
print("TestingDATA",testing_data)
np.save('testing_data_with_One_Hot',testing_data)
shuffle(testing_data)
#If the data already created First Time
#training_data = np.load('training_data_with_One_Hot.npy')
#testing_data = np.load('testing_data_with_One_Hot.npy')
train = training_data
test = testing_data[-50000:]
X_train = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 3)
y_train = [i[1] for i in train]
X_test = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 3)
y_test = [i[1] for i in test]
print("YTEST",y_test)
tf.reset_default_graph()
convnet = input_data(shape=[None,IMG_SIZE,IMG_SIZE,3],name='input')
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log', tensorboard_verbose=0)
model.fit({'input': X_train}, {'targets': y_train}, n_epoch=10,
validation_set=({'input': X_test}, {'targets': y_test}),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)
И ошибка, которую я продолжаю получать, ниже.Пожалуйста помоги.
Run id: Classification
Log directory: log/
---------------------------------
Training samples: 1
Validation samples: 1
--
Traceback (most recent call last):
File "d:/ThesisWork/seriouswork/classifier_with_onehot.py", line 109, in <module>>
snapshot_step=500, show_metric=True, run_id=MODEL_NAME) 16, in fit
File "C:\Users\zeele\Miniconda3\lib\site-packages\tflearn\models\dnn.py", line 216, in fit ine 339, in fit
callbacks=callbacks)
File "C:\Users\zeele\Miniconda3\lib\site-packages\tflearn\helpers\trainer.py", line 818, in _trainine 339, in fit
show_metric) on.py", line 929, in run
File "C:\Users\zeele\Miniconda3\lib\site-packages\tflearn\helpers\trainer.py", line 818, in _train on.py", line 1128, in _run
feed_batch)
File "C:\Users\zeele\Miniconda3\lib\site-packages\tensorflow\python\client\sessich has shape '(?, 2)'on.py", line 929, in run
run_metadata_ptr)
File "C:\Users\zeele\Miniconda3\lib\site-packages\tensorflow\python\client\session.py", line 1128, in _run
str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (1, 163, 163) for Tensor 'targets/Y:0', which has shape '(?, 2)'