У меня есть 2 фрейма данных, каждый из которых имеет столбец с типом данных timetime.Я хочу объединить второй фрейм данных с первым со следующими условиями
найти строки первого фрейма данных, значение даты / времени между значением datetime второго фрейма данных и 10 минутами до
если таких строк более одной, то взять первую
, если такой строки нет, затем заполнить пустой или нулевой
Одна строка может быть объединена только один раз.
Теперь я делаю следующим образом.Я хотел бы знать, если есть какие-либо лучшие способы сократить общее время работы.
from datetime import datetime
import datetime as dt
import pandas as pd
df1 = pd.DataFrame(columns = ['Enter_Time', 'Unique_Id'])
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 06:29:00','%Y-%m-%d %H:%M:%S'), 'A']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 06:30:00','%Y-%m-%d %H:%M:%S'), 'B']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 06:31:00','%Y-%m-%d %H:%M:%S'), 'C']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 06:32:00','%Y-%m-%d %H:%M:%S'), 'D']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 06:33:00','%Y-%m-%d %H:%M:%S'), 'E']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 08:29:00','%Y-%m-%d %H:%M:%S'), 'F']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 08:30:00','%Y-%m-%d %H:%M:%S'), 'G']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 08:31:00','%Y-%m-%d %H:%M:%S'), 'H']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 08:32:00','%Y-%m-%d %H:%M:%S'), 'I']
df1.loc[len(df1)] = [datetime.strptime('2018-10-01 08:33:00','%Y-%m-%d %H:%M:%S'), 'j']
df2 = pd.DataFrame(columns = ['Transaction_Time', 'Amount'])
df2.loc[len(df2)] = [datetime.strptime('2018-10-01 06:40:00','%Y-%m-%d %H:%M:%S'), 10.25]
df2.loc[len(df2)] = [datetime.strptime('2018-10-01 07:40:00','%Y-%m-%d %H:%M:%S'), 3.96]
df2.loc[len(df2)] = [datetime.strptime('2018-10-01 08:31:00','%Y-%m-%d %H:%M:%S'), 9.65]
df2.loc[len(df2)] = [datetime.strptime('2018-10-01 08:32:00','%Y-%m-%d %H:%M:%S'), 2.84]
df3 = pd.DataFrame(columns = ['Transaction_Time', 'Amount', 'Enter_Time', 'Unique_Id'])
for id, row in df2.iterrows():
Transaction_Time = row['Transaction_Time']
Transaction_Time_Before = Transaction_Time - dt.timedelta(seconds = 600)
Result_Row = {
'Transaction_Time' : row['Transaction_Time'],
'Amount' : row['Amount'],
'Enter_Time' : '',
'Unique_Id' : ''
}
dfFiletered = df1[(df1["Enter_Time"] < Transaction_Time) & (df1["Enter_Time"] >= Transaction_Time_Before)].sort_values(by= ['Enter_Time'],ascending=True)
if len(dfFiletered) > 0:
firstRow = dfFiletered.iloc[0]
Result_Row['Enter_Time'] = firstRow['Enter_Time']
Result_Row['Unique_Id'] = firstRow['Unique_Id']
df1.drop(df1[df1["Unique_Id"] == firstRow['Unique_Id']].index, inplace=True)
df3.loc[len(df3)] = Result_Row
print(df3)