Заимствование данных примера из этого вопроса , если у меня есть следующие данные и я подгоняю к ним следующую нелинейную модель, как я могу вычислить прогноз 95% интервал для моей кривой?
library(broom)
library(tidyverse)
x <- seq(0, 4, 0.1)
y1 <- (x * 2 / (0.2 + x))
y <- y1 + rnorm(length(y1), 0, 0.2)
d <- data.frame(x, y)
mymodel <- nls(y ~ v * x / (k + x),
start = list(v = 1.9, k = 0.19),
data = d)
mymodel_aug <- augment(mymodel)
ggplot(mymodel_aug, aes(x, y)) +
geom_point() +
geom_line(aes(y = .fitted), color = "red") +
theme_minimal()
В качестве примера я могу легко рассчитать интервал прогнозирования из линейной модели, подобной этой:
## linear example
d2 <- d %>%
filter(x > 1)
mylinear <- lm(y ~ x, data = d2)
mypredictions <-
predict(mylinear, interval = "prediction", level = 0.95) %>%
as_tibble()
d3 <- bind_cols(d2, mypredictions)
ggplot(d3, aes(x, y)) +
geom_point() +
geom_line(aes(y = fit)) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = .15) +
theme_minimal()