Я не уверен, что вы хотите, но, надеюсь, это указывает в правильном направлении.
Редактировать 1 января:
Вдохновленный @ J.Warren's использование np.squeezeЯ думаю, что np.compress может быть более подходящим.
Это делает сжатие в одну строку
np.compress((a!=0).sum(axis=(0,1)), a, axis=2) #
Чтобы объяснить первый параметр в np.compress
(a!=0).sum(axis=(0, 1)) # sum across both the 0th and 1st axes.
Out[37]: array([1, 1, 0, 0, 2]) # Keep the slices where the array !=0
Мой первый ответ, который может больше не иметь отношения
import numpy as np
a=np.random.randint(2, size=(3,4,5))*np.random.randint(2, size=(3,4,5))*np.random.randint(2, size=(3,4,5))
# Make a an array of mainly zeroes.
a
Out[31]:
array([[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 1, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 0],
[1, 0, 0, 0, 0]]])
res=np.zeros(a.shape[2], dtype=np.bool)
for ix in range(a.shape[2]):
res[ix] = (a[...,ix]!=0).any()
res
Out[34]: array([ True, True, False, False, True], dtype=bool)
# res is a boolean array of which slices of 'a' contain nonzero data
a[...,res]
# use this array to index a
# The output contains the nonzero slices
Out[35]:
array([[[0, 0, 0],
[0, 0, 1],
[0, 0, 0],
[0, 0, 0]],
[[0, 1, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 1],
[0, 0, 0],
[1, 0, 0]]])