Это моя модель для самоходного автомобиля udacity!
model = Sequential()
model.add(Lambda(lambda x: x/127.5-1.0, input_shape=(64,64,3)))
model.add(Conv2D(3, 1, 1, activation="elu"))
model.add(Conv2D(32, 3, 3, activation='elu'))
model.add(Conv2D(32, 3, 3, activation='elu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(64, 3, 3, activation='elu'))
model.add(Conv2D(64, 3, 3, activation='elu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(128, 3, 3, activation='elu'))
model.add(Conv2D(128, 3, 3, activation='elu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(512, activation="elu"))
model.add(Dense(64, activation="elu"))
model.add(Dense(16, activation="elu"))
model.add(Dense(1, activation="softmax"))
model.summary()
Я использую компилятор adam для компиляции модели
from keras.optimizers import Adam
model.compile(optimizer=Adam(lr=0.0001),loss='mean_squared_error',metrics='accuracy'])
model.fit(X_train, y_train, batch_size=256, epochs=250, shuffle = True, validation_split=0.2)
Я пробовал для каждой комбинации размера партии и эпохи, но результат, кажется, тот же.Первоначально я беру 12000 изображений для обучения и тестирования модели.Моя проблема точности очень низкая и постоянная на протяжении эпох.Также он предсказывает один и тот же вывод для каждого предварительно обработанного изображения.(ps: я предварительно обработал изображения перед тренировкой).Вот пример вывода, который показывает постоянную точность и потери (что тоже очень мало).
Train on 8084 samples, validate on 2021 samples
Epoch 1/250
8084/8084 [==============================] - 8s 1ms/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 2/250
8084/8084 [==============================] - 6s 763us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 3/250
8084/8084 [==============================] - 6s 779us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 4/250
8084/8084 [==============================] - 6s 779us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 5/250
8084/8084 [==============================] - 6s 790us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 6/250
8084/8084 [==============================] - 6s 770us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 7/250
8084/8084 [==============================] - 6s 739us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 8/250
8084/8084 [==============================] - 6s 735us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 9/250
8084/8084 [==============================] - 6s 724us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 10/250
8084/8084 [==============================] - 6s 727us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Epoch 11/250
8084/8084 [==============================] - 6s 729us/step - loss: 1.0467 - acc: 0.0014 - val_loss: 1.0666 - val_acc: 0.0015
Пожалуйста, помогите. Спасибо