Просто из любопытства я сравнил решения @Divakar numbersxpr и @alexdor numba.jit .Реализация numexpr.evaluate
кажется в два раза быстрее, чем при использовании jit-компилятора numba
.Результаты показаны для 100 прогонов каждый:
np.sum: 111.07543396949768
numexpr: 12.282189846038818
JIT: 6.2505223751068115
'np.sum' returns same result as 'numexpr'
'np.sum' returns same result as 'jit'
'numexpr' returns same result as 'jit'
Сценарий, поэтому воспроизведите результаты:
import numpy as np
import time
import numba
import numexpr
arr = np.random.rand(25000000, 2)
runs = 100
def cch(tau, cartprod):
return np.sum(abs(-1*np.diff(cartprod)-tau)<0.001)
def cch_ne(tau, cartprod):
d = {'a0':cartprod[:,0],'a1':cartprod[:,1], 'tau': tau}
count = np.count_nonzero(numexpr.evaluate('abs(a0-a1-tau)<0.001',d))
return count
@numba.jit(nopython=True)
def cch_jit(tau, cartprod):
count = 0
tau = -tau
for i in range(cartprod.shape[0]):
count += np.less(np.abs(tau - (cartprod[i, 1]- cartprod[i, 0])), 0.001)
return count
start = time.time()
for x in range(runs):
x1 = cch(0.01, arr)
print('np.sum:\t\t', time.time() - start)
start = time.time()
for x in range(runs):
x2 = cch_ne(0.01, arr)
print('numexpr:\t', time.time() - start)
x3 = cch_jit(0.01, arr)
start = time.time()
for x in range(runs):
x3 = cch_jit(0.01, arr)
print('JIT:\t\t', time.time() - start)
if x1 == x2: print('\'np.sum\' returns same result as \'numexpr\'')
if x1 == x3: print('\'np.sum\' returns same result as \'jit\'')
if x2 == x3: print('\'numexpr\' returns same result as \'jit\'')