Почему моя модель keras не тренируется вообще? - PullRequest
0 голосов
/ 31 декабря 2018

Мой код:

from keras.models import Sequential
from keras.layers import Dense, Dropout, Masking
import numpy as np
import pandas as pd

dataset = pd.read_csv("data/train.csv", header=0)
dataset = dataset.fillna(0)

X = dataset.drop(columns=['YearRemodAdd', "Id", "SalePrice"], axis=1)
Y = dataset[['SalePrice']]

X = pd.get_dummies(X, columns=["MSSubClass", "MSZoning",
                               "Street", "Alley", "LotShape",
                               "LandContour", "Utilities", "LotConfig",
                               "LandSlope", "Neighborhood", "Condition1",
                               "Condition2", "BldgType", "HouseStyle",
                               "YearBuilt", "RoofStyle", "RoofMatl",
                               "Exterior1st", "Exterior2nd", "MasVnrType",
                               "ExterQual", "ExterCond", "Foundation",
                               "BsmtQual", "BsmtCond", "BsmtExposure",
                               "BsmtFinType1", "BsmtFinType2", "Heating",
                               "HeatingQC", "CentralAir", "Electrical",
                               "KitchenQual", "Functional", "FireplaceQu",
                               "GarageType", "GarageFinish", "GarageQual",
                               "GarageCond", "PavedDrive", "PoolQC",
                               "Fence", "MiscFeature", "MoSold",
                               "YrSold", "SaleType", "SaleCondition"])

Ymax = Y['SalePrice'].max()
Y = Y['SalePrice'].apply(lambda x: float(x) / Ymax)

input_units = X.shape[1]
print(X)
print(Y)

model = Sequential()
model.add(Dense(input_units, input_dim=input_units, activation='relu'))
model.add(Dense(input_units, activation='relu'))
model.add(Dense(input_units, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='adam', metrics=['mse'])
model.fit(X, Y, epochs=250, batch_size=50,
          shuffle=True, validation_split=0.05, verbose=2)

scores = model.evaluate(X, Y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

Мои данные похожи на:

Id,MSSubClass,MSZoning,LotFrontage,LotArea,Street,Alley,LotShape,LandContour,Utilities,LotConfig,LandSlope,Neighborhood,Condition1,Condition2,BldgType,HouseStyle,OverallQual,OverallCond,YearBuilt,YearRemodAdd,RoofStyle,RoofMatl,Exterior1st,Exterior2nd,MasVnrType,MasVnrArea,ExterQual,ExterCond,Foundation,BsmtQual,BsmtCond,BsmtExposure,BsmtFinType1,BsmtFinSF1,BsmtFinType2,BsmtFinSF2,BsmtUnfSF,TotalBsmtSF,Heating,HeatingQC,CentralAir,Electrical,1stFlrSF,2ndFlrSF,LowQualFinSF,GrLivArea,BsmtFullBath,BsmtHalfBath,FullBath,HalfBath,BedroomAbvGr,KitchenAbvGr,KitchenQual,TotRmsAbvGrd,Functional,Fireplaces,FireplaceQu,GarageType,GarageYrBlt,GarageFinish,GarageCars,GarageArea,GarageQual,GarageCond,PavedDrive,WoodDeckSF,OpenPorchSF,EnclosedPorch,3SsnPorch,ScreenPorch,PoolArea,PoolQC,Fence,MiscFeature,MiscVal,MoSold,YrSold,SaleType,SaleCondition,SalePrice
1,60,RL,65,8450,Pave,NA,Reg,Lvl,AllPub,Inside,Gtl,CollgCr,Norm,Norm,1Fam,2Story,7,5,2003,2003,Gable,CompShg,VinylSd,VinylSd,BrkFace,196,Gd,TA,PConc,Gd,TA,No,GLQ,706,Unf,0,150,856,GasA,Ex,Y,SBrkr,856,854,0,1710,1,0,2,1,3,1,Gd,8,Typ,0,NA,Attchd,2003,RFn,2,548,TA,TA,Y,0,61,0,0,0,0,NA,NA,NA,0,2,2008,WD,Normal,208500
2,20,RL,80,9600,Pave,NA,Reg,Lvl,AllPub,FR2,Gtl,Veenker,Feedr,Norm,1Fam,1Story,6,8,1976,1976,Gable,CompShg,MetalSd,MetalSd,None,0,TA,TA,CBlock,Gd,TA,Gd,ALQ,978,Unf,0,284,1262,GasA,Ex,Y,SBrkr,1262,0,0,1262,0,1,2,0,3,1,TA,6,Typ,1,TA,Attchd,1976,RFn,2,460,TA,TA,Y,298,0,0,0,0,0,NA,NA,NA,0,5,2007,WD,Normal,181500

Мои результаты:

Epoch 123/250
 - 0s - loss: 3.8653 - mean_squared_error: 0.0687 - val_loss: 3.8064 - val_mean_squared_error: 0.0639
Epoch 124/250

Это застревает там после как 2эпохи.Что я могу сделать, чтобы он не застревал так быстро?

1 Ответ

0 голосов
/ 03 января 2019

Кажется, вы работаете над проблемой регрессии (т. Е. Прогнозируете непрерывные значения).Есть, по крайней мере, две вещи, которые вы должны учитывать:

  1. Как упомянул @Mitiku в разделе комментариев, в данных есть некоторые NA (то есть пропущенные) значения.Это одна из причин, по которой потеря становится nan.Либо удалите строки, имеющие значения NA, либо замените значения NA определенным значением, например 0. См. этот ответ для получения дополнительной информации о работе с отсутствующими данными.

  2. Использование accuracy в качестве метрики для задачи регрессии не имеет смысла, так как это справедливо только для задачи классификации.Вместо этого используйте метрику регрессии, такую ​​как mse (т.е. среднеквадратическая ошибка) или mae (т.е. средняя абсолютная ошибка).

Пожалуйста, примените две точки выше в своем коде, изатем доложите, как проходит обучение, и я буду обновлять этот ответ по мере необходимости.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...