У меня есть набор данных, который требует обработки пропущенного значения.
Column Missing Values
Complaint_ID 0
Date_received 0
Transaction_Type 0
Complaint_reason 0
Company_response 22506
Date_sent_to_company 0
Complaint_Status 0
Consumer_disputes 7698
Теперь проблема заключается в том, что когда я пытаюсь заменить отсутствующий values
на режим другого columns
, используя groupby
:
Код:
data11["Company_response"] =
data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()
[0]))["Company_response"]
data11["Consumer_disputes"] =
data11.groupby("Transaction_Type").transform(lambda x: x.fillna(x.mode()
[0]))["Consumer_disputes"]
Я получаю следующую ошибку:
Stacktrace
Traceback (most recent call last):
File "<ipython-input-89-8de6a010a299>", line 1, in <module>
data11["Company_response"] = data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()[0]))["Company_response"]
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3741, in transform
return self._transform_general(func, *args, **kwargs)
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3699, in _transform_general
res = path(group)
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3783, in <lambda>
lambda x: func(x, *args, **kwargs), axis=self.axis)
File "C:\Anaconda3\lib\site-packages\pandas\core\frame.py", line 4360, in apply
ignore_failures=ignore_failures)
File "C:\Anaconda3\lib\site-packages\pandas\core\frame.py", line 4456, in _apply_standard
results[i] = func(v)
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3783, in <lambda>
lambda x: func(x, *args, **kwargs), axis=self.axis)
File "<ipython-input-89-8de6a010a299>", line 1, in <lambda>
data11["Company_response"] = data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()[0]))["Company_response"]
File "C:\Anaconda3\lib\site-packages\pandas\core\series.py", line 601, in __getitem__
result = self.index.get_value(self, key)
File "C:\Anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 2434, in get_value
return libts.get_value_box(s, key)
File "pandas\_libs\tslib.pyx", line 923, in pandas._libs.tslib.get_value_box (pandas\_libs\tslib.c:18843)
File "pandas\_libs\tslib.pyx", line 939, in pandas._libs.tslib.get_value_box (pandas\_libs\tslib.c:18560)
IndexError: ('index out of bounds', 'occurred at index Consumer_disputes')
Я проверил length
из dataframe
и все его столбцы, и это то же самое: 43266.
Я также нашел вопрос, подобный этому, но не имеет правильного ответа: Нажмите здесь
Пожалуйста, помогитеустраните ошибку.
IndexError: ('index out of bounds', 'произошел в index Consumer_disputes')
Вот снимок набора данных, если он помогает влюбым способом: Снимок набора данных
Я успешно использую приведенный ниже код.Но это не служит моей цели точно.Помогает заполнить пропущенные значения.
data11['Company_response'].fillna(data11['Company_response'].mode()[0],
inplace=True)
data11['Consumer_disputes'].fillna(data11['Consumer_disputes'].mode()[0],
inplace=True)
Edit1: (Прикрепление образца)
Входные данные:
Ожидаемый результат:
Вы можете видеть, что пропущенные значения для ответа компании Tr-1 и Tr-3 заполняются при использовании режима Жалоба-Причина.И аналогично для Потребительских споров, используя режим типа транзакции, для Tr-5.
Приведенный ниже фрагмент состоит из кадра данных и кода для тех, кто хочет реплицироваться и попробовать.
Код репликации
import pandas as pd
import numpy as np
data11=pd.DataFrame({'Complaint_ID':['Tr-1','Tr-2','Tr-3','Tr-4','Tr-5','Tr-6'],
'Transaction_Type':['Mortgage','Credit card','Bank account or service','Debt collection','Credit card','Mortgage'],
'Complaint_reason':['Loan servicing, payments, escrow account','Incorrect information on credit report',"Cont'd attempts collect debt not owed","Cont'd attempts collect debt not owed",'Payoff process','Loan servicing, payments, escrow account'],
'Company_response':[np.nan,'Company chooses not to provide a public response',np.nan,'Company believes it acted appropriately as authorized by contract or law','Company has responded to the consumer and the CFPB and chooses not to provide a public response','Company disputes the facts presented in the complaint'],
'Consumer_disputes':['Yes','No','No','No',np.nan,'Yes']})
data11.isnull().sum()
data11["Company_response"] = data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()[0]))["Company_response"]
data11["Consumer_disputes"] = data11.groupby("Transaction_Type").transform(lambda x: x.fillna(x.mode()[0]))["Consumer_disputes"]