Я установил PIL 4.1.1, который требуется для torchvision.Как я могу решить эту ошибку Google колаборатории PIL OS?Я заменил версию 4.0.0, которая поставляется с ноутбуком на> = 4.1.1, которая требуется torchvision.Я также перезапустил среду выполнения.Однако эта проблема сохраняется.Я пробовал несколько версий PIL до последней версии 5.3.0.
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'valid']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'valid' and epoch_acc > best_acc:
print('New best accuracy')
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(best_model_wts, 'best_model_latest.pth')
e.write(str(epoch))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
model = train_model(model, criterion,optimizer, exp_lr_scheduler, num_epochs=25)
e.close()
OSError Traceback (most recent call last)
<ipython-input-12-18fb6bbc6b2f> in <module>()
68 model.load_state_dict(best_model_wts)
69 return model
---> 70 model = train_model(model, criterion,optimizer, exp_lr_scheduler, num_epochs=25)
71 e.close()
<ipython-input-12-18fb6bbc6b2f> in train_model(model, criterion, optimizer, scheduler, num_epochs)
21
22 # Iterate over data.
---> 23 for inputs, labels in dataloaders[phase]:
24 inputs = inputs.to(device)
25 labels = labels.to(device)
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in __next__(self)
284 self.reorder_dict[idx] = batch
285 continue
--> 286 return self._process_next_batch(batch)
287
288 next = __next__ # Python 2 compatibility
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in _process_next_batch(self, batch)
305 self._put_indices()
306 if isinstance(batch, ExceptionWrapper):
--> 307 raise batch.exc_type(batch.exc_msg)
308 return batch
309
OSError: Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 57, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 57, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/usr/local/lib/python3.6/dist-packages/torchvision/datasets/folder.py", line 101, in __getitem__
sample = self.loader(path)
File "/usr/local/lib/python3.6/dist-packages/torchvision/datasets/folder.py", line 147, in default_loader
return pil_loader(path)
File "/usr/local/lib/python3.6/dist-packages/torchvision/datasets/folder.py", line 129, in pil_loader
img = Image.open(f)
File "/usr/local/lib/python3.6/dist-packages/PIL/Image.py", line 2419, in open
prefix = fp.read(16)
OSError: [Errno 5] Input/output error