Я не совсем понимаю, почему я не могу лемматизировать или делать Стемминг.Я пытался преобразовать массив в строку, но мне не повезло.
Это мой код.
import bs4, re, string, nltk, numpy as np, pandas as pd
from nltk.stem import PorterStemmer
from bs4 import BeautifulSoup as soup
from urllib.request import urlopen
news_url="https://news.google.com/news/rss"
Client=urlopen(news_url)
xml_page=Client.read()
Client.close()
soup_pg=soup(xml_page,"xml")
news_lst=soup_page.findAll("item")
limit=19
corpus = []
# Print news title, url and publish date
for index, news in enumerate(news_list):
#print(news.title.text)
#print(index+1)
corpus.append(news.title.text)
if index ==limit:
break
#print(arrayList)
df = pd.DataFrame(corpus, columns=['News'])
wpt=nltk.WordPunctTokenizer()
stop_words=nltk.corpus.stopwords.words('english')
def normalize_document (doc):
#lowercase and remove special characters\whitespace
doc=re.sub(r'[^a-zA-Z\s]', '', doc, re.I|re.A) #re.I ignore case sensitive, ASCII-only matching
doc=doc.lower()
doc=doc.strip()
#tokenize document
tokens=wpt.tokenize(doc)
#filter stopwords out of document
filtered_tokens=[token for token in tokens if token not in stop_words]
#re-create documenr from filtered tokens
doc=' '.join(filtered_tokens)
return doc
normalize_corpus=np.vectorize(normalize_document)
norm_corpus=normalize_corpus(corpus)
norm_corpus
Полученная ошибка начинается со следующих строк, которые я добавляю
stemmer = PorterStemmer()
sentences = nltk.sent_tokenize(norm_corpus)
# Stemming
for i in range(len(norm_corpus)):
words = nltk.word_tokenize(norm_corpus[i])
words = [stemmer.stem(word) for word in words]
norm_corpus[i] = ' '.join(words)
как только я вставляю эти строки, я получаю следующую ошибку: TypeError: не могу использовать строковый шаблон на байтовоподобном объекте
Я думаю, что если я решу ошибку с помощью stemming, это будет тем же решениемна мою ошибку с лемматизацией.