У меня есть модель keras, которую я пытаюсь тренировать с большим набором данных по частям
for chunk in pd.read_csv(input_file, chunksize=chunk_size, usecols = FEATURE_COLUMNS, low_memory = False):
(X_train, y_train, X_val, y_val,full_pipeline) = dataPrep.get_data(data=chunk, mean=mean, variance=variance)
print("Clicks in Training Set => {} , in CV => {}".format(np.sum(y_train == 1),np.sum(y_val == 1)))
print("SMS in Training Set => {} , in CV => {}".format(np.sum(y_train == 0),np.sum(y_val == 0)))
preprocessor = full_pipeline
model.fit(X_train, y_train, batch_size=batch_size, validation_data=(X_val, y_val), epochs=epochs, verbose=1)
score = model.evaluate(X_val, y_val, verbose=0)
print('Validation Metrics :', score)
Есть ли способ измерить показатель f1 модели после обучения на всем наборе данных?Вместо производительности каждого куска