Для данных csv временных рядов, как показано ниже, необходимо генерировать агрегированное среднее значение столбцов Col2-Col13 через каждые 40 мс
Time,Col2,Col3,Col4,Col5,Col6,Col7,Col8,Col9,Col10,Col11,Col12,Col13
05:17:55.703,,,,,,21,,3, 89,891,11,
05:17:55.703,,,,,,21,,3, 217,891,12,
05:17:55.703,,,,,,21,,3, 217,891,13,
05:17:55.703,,,,,,21,,3, 217,891,15,
05:17:55.703,,,,,,21,,3, 217,891,16,
05:17:55.703,,,,,,21,,3, 217,891,17,
05:17:55.703,,,,,,21,,3, 217,891,18,
05:17:55.707,,,,,,18,,3, 185,892,0,
05:17:55.707,,,,,,21,,3, 185,892,1,
05:17:55.707,,,,,,17,,3, 73,892,5,
05:17:55.707,,,,,,17,,3, 185,892,6,
05:17:55.707,,,,,,21,,3, 73,892,7,
05:17:55.708,268,4,28,-67.60,13,,2,,,,,2
05:17:55.711,,,,,,18,,3, 57,892,10,
05:17:55.711,,,,,,21,,3, 201,892,11,
05:17:55.711,,,,,,21,,3, 25,892,12,
05:17:55.723,,,,,,21,,3, 217,893,11,
05:17:55.723,,,,,,21,,3, 217,893,15,
05:17:55.723,,,,,,21,,3, 217,893,16,
05:17:55.726,268,4,,-67.80,,,,,,,,
05:17:55.728,,,28,,12,31,2,3, 185,894,0,1
05:17:55.728,,,,,,31,,3, 185,894,1,
05:17:55.731,,,,,,31,,3, 217,894,10,
05:17:55.731,,,,,,20,,3, 217,894,11,
05:17:55.731,,,,,,20,,3, 217,894,12,
05:17:55.731,,,,,,20,,3, 217,894,13,
05:17:55.743,,,,,,20,,3, 217,895,11,
05:17:55.743,,,,,,20,,3, 217,895,15,
05:17:55.743,,,,,,20,,3, 217,895,16,
05:17:55.746,268,4,,-67.82,,,,,,,,
05:17:55.747,,,28,,13,20,2,3, 185,896,1,2
05:17:55.747,,,,,,20,,3, 185,896,2,
05:17:55.747,,,,,,30,,3, 217,896,5,
05:17:55.751,,,,,,18,,3, 217,896,10,
05:17:55.751,,,,,,21,,3, 217,896,11,
05:17:55.751,,,,,,21,,3, 217,896,12,
05:17:55.751,,,,,,21,,3, 217,896,13,
05:17:55.763,,,,,,31,,3, 217,897,11,
05:17:55.763,,,,,,30,,3, 217,897,15,
05:17:55.763,,,,,,20,,3, 217,897,16,
05:17:55.763,,,,,,20,,3, 217,897,17,
05:17:55.766,268,4,,-67.13,,,,,,,,
05:17:55.768,,,28,,12,20,2,3, 185,898,3,2
05:17:55.768,,,,,,16,,3, 217,898,6,
05:17:55.771,,,,,,18,,3, 217,898,10,
05:17:55.771,,,,,,20,,3, 217,898,11,
05:17:55.771,,,,,,20,,3, 217,898,12,
05:17:55.784,,,,,,20,,3, 217,899,11,
05:17:55.784,,,,,,20,,3, 41,899,12,
05:17:55.784,,,,,,20,,3, 25,899,13,
05:17:55.784,,,,,,20,,3, 217,899,15,
05:17:55.784,,,,,,20,,3, 217,899,16,
05:17:55.784,,,,,,20,,3, 217,899,17,
05:17:55.784,,,,,,20,,3, 217,899,18,
05:17:55.786,268,4,,-67.66,,,,,,,,
05:17:55.788,,,28,,13,18,2,3, 185,900,0,2
05:17:55.788,,,,,,20,,3, 185,900,1,
05:17:55.788,,,,,,20,,3, 185,900,2,
05:17:55.788,,,,,,16,,3, 41,900,5,
05:17:55.788,,,,,,17,,3, 185,900,6,
05:17:55.791,,,,,,20,,3, 105,900,7,
05:17:55.791,,,,,,20,,3, 89,900,8,
05:17:55.791,,,,,,18,,3, 217,900,10,
05:17:55.791,,,,,,20,,3, 217,900,11,
05:17:55.791,,,,,,20,,3, 25,900,12,
05:17:55.806,268,4,,-67.50,,,,,,,,
05:17:55.808,,,28,,12,31,2,3, 185,902,0,1
05:17:55.808,,,,,,31,,3, 185,902,1,
05:17:55.808,,,,,,20,,3, 25,902,2,
05:17:55.808,,,,,,20,,3, 25,902,3,
05:17:55.808,,,,,,16,,3, 217,902,5,
05:17:55.808,,,,,,16,,3, 217,902,6,
05:17:55.811,,,,,,20,,3, 89,902,7,
05:17:55.811,,,,,,20,,3, 121,902,8,
05:17:55.811,,,,,,18,,3, 217,902,10,
05:17:55.811,,,,,,20,,3, 217,902,11,
05:17:55.811,,,,,,20,,3, 73,902,12,
05:17:55.811,,,,,,20,,3, 9,902,15,
05:17:55.815,,,,,,20,,3, 217,902,16,
05:17:55.815,,,,,,20,,3, 25,902,17,
05:17:55.815,,,,,,20,,3, 217,902,18,
05:17:55.815,,,,,,18,,3, 217,903,0,
05:17:55.815,,,,,,21,,3, 217,903,1,
05:17:55.815,,,,,,19,,3, 105,903,2,
05:17:55.815,,,,,,21,,3, 41,903,3,
05:17:55.823,,,,,,21,,3, 217,903,11,
05:17:55.823,,,,,,21,,3, 9,903,12,
05:17:55.823,,,,,,21,,3, 105,903,13,
05:17:55.823,,,,,,21,,3, 217,903,15,
05:17:55.823,,,,,,21,,3, 217,903,16,
05:17:55.823,,,,,,21,,3, 121,903,17,
05:17:55.823,,,,,,21,,3, 89,903,18,
05:17:55.826,268,4,,-67.51,,,,,,,,
05:17:55.828,,,28,,12,18,2,3, 185,904,0,1
05:17:55.828,,,,,,21,,3, 185,904,1,
05:17:55.828,,,,,,21,,3, 185,904,2,
05:17:55.828,,,,,,21,,3, 185,904,3,
05:17:55.828,,,,,,17,,3, 217,904,5,
05:17:55.828,,,,,,17,,3, 217,904,6,
05:17:55.831,,,,,,21,,3, 217,904,7,
05:17:55.831,,,,,,20,,3, 169,904,11,
05:17:55.831,,,,,,20,,3, 217,904,12,
05:17:55.831,,,,,,20,,3, 217,904,13,
05:17:55.846,268,4,,-67.01,,,,,,,,
05:17:55.848,,,28,,13,19,2,3, 57,906,1,2
05:17:55.848,,,,,,19,,3, 41,906,2,
05:17:55.848,,,,,,19,,3, 73,906,3,
05:17:55.848,,,,,,16,,3, 217,906,5,
05:17:55.848,,,,,,16,,3, 217,906,6,
05:17:55.848,,,,,,19,,3, 9,906,7,
05:17:55.851,,,,,,20,,3, 121,906,11,
05:17:55.851,,,,,,20,,3, 57,906,12,
05:17:55.851,,,,,,20,,3, 105,906,13,
05:17:55.855,,,,,,20,,3, 217,906,15,
05:17:55.855,,,,,,20,,3, 217,906,16,
05:17:55.855,,,,,,20,,3, 105,906,17,
05:17:55.855,,,,,,17,,3, 185,907,0,
05:17:55.855,,,,,,20,,3, 217,907,1,
05:17:55.855,,,,,,20,,3, 9,907,2,
Ожидаемый результат - это фрейм данных с агрегированными средними значениями (игнорируя пустые значения) каждые 40 мскак показано ниже
+--------------+------+------+------+---------+------+------+------+------+--------+-------+-------+-------+
| Time | Col2 | Col3 | Col4 | Col5 | Col6 | Col7 | Col8 | Col9 | Col10 | Col11 | Col12 | Col13 |
+--------------+------+------+------+---------+------+------+------+------+--------+-------+-------+-------+
| 05:17:55.740 | 268 | 4 | 28 | -67.7 | 12.5 | 21 | 2 | 3 | 177.67 | 894 | 13 | 1.5 |
| 05:17:55.780 | 268 | 4 | 28 | -67.475 | 12.5 | 20 | 2 | 3 | 212.2 | 898 | 12 | 2 |
| 05:17:55.820 | 268 | 4 | 28 | -67.58 | 12.5 | 20 | 2 | 3 | 144.56 | 903 | 11 | 1.5 |
| 05:17:55.860 | 268 | 4 | 28 | -67.26 | 12.5 | 20 | 2 | 3 | 155.06 | 907 | 2 | 1.5 |
+--------------+------+------+------+---------+------+------+------+------+--------+-------+-------+-------+
Как сгруппировать записи в pandas
, чтобы добиться этого?Также возможно ли применить разные функции агрегирования к разным столбцам - например, среднее значение для Col5
, режим для Col2
, медиана для Col7
и т. Д.?