Вы можете создать третий столбец в вашем pandas.DataFrame
, который включает в себя эту логику и объединить с ней.
Например, создать фиктивные данные
df1 = pd.DataFrame({"A" : [1, None], "B" : [1, 2], "Val1" : ["a", "b"]})
df2 = pd.DataFrame({"A" : [1, 2], "B" : [None, 2], "Val2" : ["c", "d"]})
Создать столбец c
которая имеет эту логику
df1["C"] = pd.concat([df1.loc[~df1.A.isna(), "A"], df1.loc[df1.A.isna(), "B"]],ignore_index=False)
df2["C"] = pd.concat([df2.loc[~df2.A.isna(), "A"], df2.loc[df2.A.isna(), "B"]],ignore_index=False)
Наконец, объедините этот общий столбец и включите в него только столбцы значений
df3 = pd.merge(df1[["Val1","C"]], df2[["Val2","C"]], on='C')
In [27]: df3
Out[27]:
Val1 C Val2
0 a 1.0 c
1 b 2.0 d