Таким образом, целью этого вопроса было просто опубликовать мое решение этой проблемы публично.Я не мог найти такое решение в Google, поэтому я решил попробовать его самостоятельно.Оказывается, реализацию на самом деле довольно просто расширить от «подхода № 2» в посте, указанном в моем вопросе!
Эффективная реализация ND «im2col»
def im2col(im, win, strides = 1):
# Dimensions
ext_shp = tuple(np.subtract(im.shape, win) + 1)
shp = tuple(win) + ext_shp
strd = im.strides*2
win_len = np.prod(win)
try:
len(strides)
except:
strides = [strides]*im.ndim
strides = [min(i, s) for i, s in zip(im.shape, strides)]
# Stack all possible patches as an N-D array using a strided view followed by reshaping
col = np.lib.stride_tricks.as_strided(im, shape = shp, strides = strd).reshape(win_len, -1).reshape(-1, *ext_shp)
# Extract patches with stride and reshape into columns
slcs = tuple([slice(None, None, None)] + [slice(None, None, s) for s in strides])
col = col[slcs].reshape(win_len, -1)
return col
Эффективная реализация ND "col2im"
def col2im(col, im_shp, win, strides = 1):
# Dimensions
try:
len(strides)
except:
strides = [strides]*len(im_shp)
strides = [min(i, s) for i, s in zip(im_shp, strides)]
# Reshape columns into image
if col.ndim > 1:
im = col.reshape((-1, ) + tuple(np.subtract(im_shp, win)//np.array(strides) + 1))[0]
else:
im = col.reshape(tuple(np.subtract(im_shp, win)//np.array(strides) + 1))
return im
Проверка того, что это работает
Давайте определим произвольный трехмерный ввод:
x = np.arange(216).reshape(6, 6, 6)
print(x)
[[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[ 12 13 14 15 16 17]
[ 18 19 20 21 22 23]
[ 24 25 26 27 28 29]
[ 30 31 32 33 34 35]]
[[ 36 37 38 39 40 41]
[ 42 43 44 45 46 47]
[ 48 49 50 51 52 53]
[ 54 55 56 57 58 59]
[ 60 61 62 63 64 65]
[ 66 67 68 69 70 71]]
[[ 72 73 74 75 76 77]
[ 78 79 80 81 82 83]
[ 84 85 86 87 88 89]
[ 90 91 92 93 94 95]
[ 96 97 98 99 100 101]
[102 103 104 105 106 107]]
[[108 109 110 111 112 113]
[114 115 116 117 118 119]
[120 121 122 123 124 125]
[126 127 128 129 130 131]
[132 133 134 135 136 137]
[138 139 140 141 142 143]]
[[144 145 146 147 148 149]
[150 151 152 153 154 155]
[156 157 158 159 160 161]
[162 163 164 165 166 167]
[168 169 170 171 172 173]
[174 175 176 177 178 179]]
[[180 181 182 183 184 185]
[186 187 188 189 190 191]
[192 193 194 195 196 197]
[198 199 200 201 202 203]
[204 205 206 207 208 209]
[210 211 212 213 214 215]]]
Давайте извлечем все патчи с неравномерным окном и равным шагом:
y = im2col(x, [1, 3, 2], strides = [1, 3, 2])
print(y.T) # transposed for ease of visualization
[[ 0 1 6 7 12 13]
[ 2 3 8 9 14 15]
[ 4 5 10 11 16 17]
[ 18 19 24 25 30 31]
[ 20 21 26 27 32 33]
[ 22 23 28 29 34 35]
[ 36 37 42 43 48 49]
[ 38 39 44 45 50 51]
[ 40 41 46 47 52 53]
[ 54 55 60 61 66 67]
[ 56 57 62 63 68 69]
[ 58 59 64 65 70 71]
[ 72 73 78 79 84 85]
[ 74 75 80 81 86 87]
[ 76 77 82 83 88 89]
[ 90 91 96 97 102 103]
[ 92 93 98 99 104 105]
[ 94 95 100 101 106 107]
[108 109 114 115 120 121]
[110 111 116 117 122 123]
[112 113 118 119 124 125]
[126 127 132 133 138 139]
[128 129 134 135 140 141]
[130 131 136 137 142 143]
[144 145 150 151 156 157]
[146 147 152 153 158 159]
[148 149 154 155 160 161]
[162 163 168 169 174 175]
[164 165 170 171 176 177]
[166 167 172 173 178 179]
[180 181 186 187 192 193]
[182 183 188 189 194 195]
[184 185 190 191 196 197]
[198 199 204 205 210 211]
[200 201 206 207 212 213]
[202 203 208 209 214 215]]
Давайте преобразуем это обратно в изображение с пониженной дискретизацией:
z = col2im(y, x.shape, [1, 3, 2], strides = [1, 3, 2])
print(z)
[[[ 0 2 4]
[ 18 20 22]]
[[ 36 38 40]
[ 54 56 58]]
[[ 72 74 76]
[ 90 92 94]]
[[108 110 112]
[126 128 130]]
[[144 146 148]
[162 164 166]]
[[180 182 184]
[198 200 202]]]
Как видите, конечный результат - это действительно изображение с пониженной частотой, которое мы ожидаем (вы можете легко проверить это, перейдя значение по значению).Размерность и шаги, которые я выбрал, были чисто иллюстративными.Нет причин, по которым размер окна должен быть таким же, как ваш шаг, или что вы не можете подняться выше 3-х измерений.
Приложения
Если вы хотитеиспользуйте это практически, все, что вам нужно сделать, это перехватить вывод im2col, прежде чем превратить его обратно в изображение.Например, если вы хотите выполнить объединение, вы можете взять среднее или максимальное значение по 0-й оси.Если вы хотите сделать свертку, вам просто нужно умножить это на ваш сплющенный сверточный фильтр.
Могут быть более эффективные альтернативы этому, уже реализованные под капотом Tensorflow и т. Д., Которые работают быстрее, чем "im2col".«.Это не является наиболее эффективной реализацией.И, конечно, вы могли бы еще больше оптимизировать мой код, исключив промежуточный этап изменения формы в «im2col», но для меня это было не сразу очевидно, поэтому я просто оставил это на этом.Если у вас есть лучшее решение, дайте мне знать.В любом случае, надеюсь, что это поможет кому-то еще, ищущему тот же ответ!