Листинг [Python 3.Docs]: ctypes - библиотека сторонних функций для Python .
Я (пока) не дошел до основания NumPy ошибка (пока я достиг _multiarray_umath ( C ) источников, но я не знаю, как вызываются функции из _internal.py ).
Между тем, вот вариант, в котором не используется NumPy (который не нужен в этом случае, но вы упомянули, что используете его в других частях, так что, вероятно, это исправляет толькочасть вашей проблемы).
code03.py :
#!/usr/bin/env python3
import sys
import ctypes
import numpy as np
class FFIArray(ctypes.Structure):
"""
Convert sequence of structs or types to C-compatible void array
"""
_fields_ = [
("data", ctypes.c_void_p),
("len", ctypes.c_size_t)
]
@classmethod
def from_param(cls, seq, data_type):
""" Allow implicit conversions """
return seq if isinstance(seq, cls) else cls(seq, data_type)
def __init__(self, seq, data_type):
self.len = len(seq)
self._data_type = data_type
self._DataTypeArr = self._data_type * self.len
self.data = ctypes.cast(self._DataTypeArr(*seq), ctypes.c_void_p)
def __str__(self):
ret = super().__str__() # Python 3
#ret = super(FFIArray, self).__str__() # !!! Python 2 !!!
ret += "\nType: {0:s}\nLength: {1:d}\nElement Type: {2:}\nElements:\n".format(
self.__class__.__name__, self.len, self._data_type)
arr_data = self._DataTypeArr.from_address(self.data)
for idx, item in enumerate(arr_data):
ret += " {0:d}: {1:}\n".format(idx, item)
return ret
class Coordinates(ctypes.Structure):
_fields_ = [
("lat", ctypes.c_double),
("lon", ctypes.c_double)
]
def __str__(self):
return "Latitude: {0:.3f}, Longitude: {1:.3f}".format(self.lat, self.lon)
def main():
coord_list = [Coordinates(i+ 1, i * 2) for i in range(4)]
s0 = b"foo"
s1 = b"bar"
word_list = [s0, s1]
coord_array = FFIArray(coord_list, data_type=Coordinates)
print(coord_array)
word_array = FFIArray(word_list, ctypes.c_char_p)
print(word_array)
if __name__ == "__main__":
print("Python {0:s} {1:d}bit on {2:s}\n".format(" ".join(item.strip() for item in sys.version.split("\n")), 64 if sys.maxsize > 0x100000000 else 32, sys.platform))
print("NumPy: {0:s}\n".format(np.version.version))
main()
print("\nDone.")
Примечания :
- Исправленоошибка в
FFIArray.from_param
(отсутствует arg ) - Использование NumPy из инициализатора довольно неудобно:
- Создание ctypes массив из байтового значения
- Создание массива np (из результата предыдущего шага)
- Создание указателя ctypes (из предыдущегошаг)
- Сделал несколько небольших рефакторов к исходному коду
Вывод :
[cfati@CFATI-5510-0:e:\Work\Dev\StackOverflow\q058049957]> "e:\Work\Dev\VEnvs\py_064_03.07.03_test0\Scripts\python.exe" code03.py
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD64)] 64bit on win32
NumPy: 1.16.2
<__main__.FFIArray object at 0x0000019CFEB63648>
Type: FFIArray
Length: 4
Element Type: <class '__main__.Coordinates'>
Elements:
0: Latitude: 1.000, Longitude: 0.000
1: Latitude: 2.000, Longitude: 2.000
2: Latitude: 3.000, Longitude: 4.000
3: Latitude: 4.000, Longitude: 6.000
<__main__.FFIArray object at 0x0000019CFEB637C8>
Type: FFIArray
Length: 2
Element Type: <class 'ctypes.c_char_p'>
Elements:
0: b'foo'
1: b'bar'
Done.
@ EDIT0
PEP 3118 определяет стандарт для доступа (совместного использования) памяти.Частично это спецификаторы строки формата, используемые для преобразования содержимого буфера в соответствующие данные.Они перечислены в [Python.Docs]: PEP 3118 - Добавлены синтаксис struct string и расширены из [Python 3.Docs]: struct - Символы формата .
ctypes типы имеют ( !!! недокументированный !!! ) _type_ , который (я предполагаю) используется при выполнении преобразования из / в np :
>>> import ctypes
>>>
>>> data_types = list()
>>>
>>> for attr_name in dir(ctypes):
... attr = getattr(ctypes, attr_name, None)
... if isinstance(attr, type) and issubclass(attr, (ctypes._SimpleCData,)):
... data_types.append((attr, attr_name))
...
>>> for data_type, data_type_name in data_types:
... print("{0:} ({1:}) - {2:}".format(data_type, data_type_name, getattr(data_type, "_type_", None)))
...
<class 'ctypes.HRESULT'> (HRESULT) - l
<class '_ctypes._SimpleCData'> (_SimpleCData) - None
<class 'ctypes.c_bool'> (c_bool) - ?
<class 'ctypes.c_byte'> (c_byte) - b
<class 'ctypes.c_char'> (c_char) - c
<class 'ctypes.c_char_p'> (c_char_p) - z
<class 'ctypes.c_double'> (c_double) - d
<class 'ctypes.c_float'> (c_float) - f
<class 'ctypes.c_long'> (c_int) - l
<class 'ctypes.c_short'> (c_int16) - h
<class 'ctypes.c_long'> (c_int32) - l
<class 'ctypes.c_longlong'> (c_int64) - q
<class 'ctypes.c_byte'> (c_int8) - b
<class 'ctypes.c_long'> (c_long) - l
<class 'ctypes.c_double'> (c_longdouble) - d
<class 'ctypes.c_longlong'> (c_longlong) - q
<class 'ctypes.c_short'> (c_short) - h
<class 'ctypes.c_ulonglong'> (c_size_t) - Q
<class 'ctypes.c_longlong'> (c_ssize_t) - q
<class 'ctypes.c_ubyte'> (c_ubyte) - B
<class 'ctypes.c_ulong'> (c_uint) - L
<class 'ctypes.c_ushort'> (c_uint16) - H
<class 'ctypes.c_ulong'> (c_uint32) - L
<class 'ctypes.c_ulonglong'> (c_uint64) - Q
<class 'ctypes.c_ubyte'> (c_uint8) - B
<class 'ctypes.c_ulong'> (c_ulong) - L
<class 'ctypes.c_ulonglong'> (c_ulonglong) - Q
<class 'ctypes.c_ushort'> (c_ushort) - H
<class 'ctypes.c_void_p'> (c_void_p) - P
<class 'ctypes.c_void_p'> (c_voidp) - P
<class 'ctypes.c_wchar'> (c_wchar) - u
<class 'ctypes.c_wchar_p'> (c_wchar_p) - Z
<class 'ctypes.py_object'> (py_object) - O
Как видно выше, c_char_p и c_whar_p не найдены или не найденыне соответствует стандарту.С первого взгляда st кажется, что это ошибка ctypes , поскольку она не соответствует стандарту, но я бы не стал спешить с утверждением этого факта (и, возможно, с сообщением об ошибке) раньшедальнейшие исследования (особенно потому, что в этой области уже сообщалось об ошибках: [Python.Bugs]: массивы ctypes имеют неверную информацию о буфере (PEP-3118) ).
Ниже приведен вариант, которыйтакже обрабатывает np массивов.
code04.py :
#!/usr/bin/env python3
import sys
import ctypes
import numpy as np
class FFIArray(ctypes.Structure):
"""
Convert sequence of structs or types to C-compatible void array
"""
_fields_ = [
("data", ctypes.c_void_p),
("len", ctypes.c_size_t)
]
_special_np_types_mapping = {
ctypes.c_char_p: "S",
ctypes.c_wchar_p: "U",
}
@classmethod
def from_param(cls, seq, data_type=ctypes.c_void_p):
""" Allow implicit conversions """
return seq if isinstance(seq, cls) else cls(seq, data_type=data_type)
def __init__(self, seq, data_type=ctypes.c_void_p):
self.len = len(seq)
self.__data_type = data_type
if isinstance(seq, np.ndarray):
arr = np.ctypeslib.as_ctypes(seq)
self._data_type = arr._type_
self._DataTypeArr = arr.__class__
self.data = ctypes.cast(arr, ctypes.c_void_p)
else:
self._data_type = data_type
self._DataTypeArr = self._data_type * self.len
self.data = ctypes.cast(self._DataTypeArr(*seq), ctypes.c_void_p)
def __str__(self):
strings = [super().__str__()] # Python 3
#strings = [super(FFIArray, self).__str__()] # !!! Python 2 (ugly) !!!
strings.append("Type: {0:s}\nElement Type: {1:}{2:}\nElements ({3:d}):".format(
self.__class__.__name__, self._data_type,
"" if self._data_type == self.__data_type else " ({0:})".format(self.__data_type),
self.len))
arr_data = self._DataTypeArr.from_address(self.data)
for idx, item in enumerate(arr_data):
strings.append(" {0:d}: {1:}".format(idx, item))
return "\n".join(strings) + "\n"
def to_np(self):
arr_data = self._DataTypeArr.from_address(self.data)
if self._data_type in self._special_np_types_mapping:
dtype = np.dtype(self._special_np_types_mapping[self._data_type] + str(max(len(item) for item in arr_data)))
np_arr = np.empty(self.len, dtype=dtype)
for idx, item in enumerate(arr_data):
np_arr[idx] = item
return np_arr
else:
return np.ctypeslib.as_array(arr_data)
class Coordinates(ctypes.Structure):
_fields_ = [
("lat", ctypes.c_double),
("lon", ctypes.c_double)
]
def __str__(self):
return "Latitude: {0:.3f}, Longitude: {1:.3f}".format(self.lat, self.lon)
def main():
coord_list = [Coordinates(i + 1, i * 2) for i in range(4)]
s0 = b"foo"
s1 = b"bar (beyond all recognition)" # To avoid having 2 equal strings
word_list = [s0, s1]
coord_array0 = FFIArray(coord_list, data_type=Coordinates)
print(coord_array0)
word_array0 = FFIArray(word_list, data_type=ctypes.c_char_p)
print(word_array0)
print("to_np: {0:}\n".format(word_array0.to_np()))
np_array_src = np.array([0, -3.141593, 2.718282, -0.577, 0.618])
float_array0 = FFIArray.from_param(np_array_src, data_type=None)
print(float_array0)
np_array_dst = float_array0.to_np()
print("to_np: {0:}".format(np_array_dst))
print("Equal np arrays: {0:}\n".format(all(np_array_src == np_array_dst)))
empty_array0 = FFIArray.from_param([])
print(empty_array0)
if __name__ == "__main__":
print("Python {0:s} {1:d}bit on {2:s}\n".format(" ".join(item.strip() for item in sys.version.split("\n")), 64 if sys.maxsize > 0x100000000 else 32, sys.platform))
print("NumPy: {0:s}\n".format(np.version.version))
main()
print("\nDone.")
Выход :
[cfati@CFATI-5510-0:e:\Work\Dev\StackOverflow\q058049957]> "e:\Work\Dev\VEnvs\py_064_03.07.03_test0\Scripts\python.exe" code04.py
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD64)] 64bit on win32
NumPy: 1.16.2
<__main__.FFIArray object at 0x000002484A2265C8>
Type: FFIArray
Element Type: <class '__main__.Coordinates'>
Elements (4):
0: Latitude: 1.000, Longitude: 0.000
1: Latitude: 2.000, Longitude: 2.000
2: Latitude: 3.000, Longitude: 4.000
3: Latitude: 4.000, Longitude: 6.000
<__main__.FFIArray object at 0x000002484A2267C8>
Type: FFIArray
Element Type: <class 'ctypes.c_char_p'>
Elements (2):
0: b'foo'
1: b'bar (beyond all recognition)'
to_np: [b'foo' b'bar (beyond all recognition)']
<__main__.FFIArray object at 0x000002484A2264C8>
Type: FFIArray
Element Type: <class 'ctypes.c_double'> (None)
Elements (5):
0: 0.0
1: -3.141593
2: 2.718282
3: -0.577
4: 0.618
to_np: [ 0. -3.141593 2.718282 -0.577 0.618 ]
Equal np arrays: True
<__main__.FFIArray object at 0x000002484A226848>
Type: FFIArray
Element Type: <class 'ctypes.c_void_p'>
Elements (0):
Done.
Конечно, это одна из возможностей.Другой может включать (не рекомендуется) [SciPy.Docs]: numpy.char.array использование, но я не хотел слишком усложнять вещи (без четкого сценария).
@ EDIT1
Добавлено FFIArray в np преобразование массива (я не эксперт np , поэтому это может показаться громоздкимдля того, кто есть).Строки требуют специальной обработки.
Не опубликовал новую версию кода (так как изменения не очень значительны), вместо этого работал над предыдущей.