См. Код капсульной сети , я использую только модуль классификации из упомянутого кода, поэтому ниже приведен полный классификационный код, который я извлек из ссылки.
from __future__ import division, print_function, unicode_literals
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
tf.reset_default_graph()
np.random.seed(42)
tf.set_random_seed(42)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/")
X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X")
caps1_n_maps = 32
caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules
caps1_n_dims = 8
conv1_params = {
"filters": 256,
"kernel_size": 9,
"strides": 1,
"padding": "valid",
"activation": tf.nn.relu,
}
conv2_params = {
"filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters
"kernel_size": 9,
"strides": 2,
"padding": "valid",
"activation": tf.nn.relu
}
conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params)
conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params)
caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims],name="caps1_raw")
def squash(s, axis=-1, epsilon=1e-7, name=None):
with tf.name_scope(name, default_name="squash"):
squared_norm = tf.reduce_sum(tf.square(s), axis=axis,keep_dims=True)
safe_norm = tf.sqrt(squared_norm + epsilon)
squash_factor = squared_norm / (1. + squared_norm)
unit_vector = s / safe_norm
return squash_factor * unit_vector
caps1_output = squash(caps1_raw, name="caps1_output")
caps2_n_caps = 10
caps2_n_dims = 16
init_sigma = 0.1
W_init = tf.random_normal(
shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims),
stddev=init_sigma, dtype=tf.float32, name="W_init")
W = tf.Variable(W_init, name="W")
batch_size = tf.shape(X)[0]
W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled")
caps1_output_expanded = tf.expand_dims(caps1_output, -1,
name="caps1_output_expanded")
caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2,
name="caps1_output_tile")
caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1],
name="caps1_output_tiled")
caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled,
name="caps2_predicted")
raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1],
dtype=np.float32, name="raw_weights")
#ROUND 1
routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights")
weighted_predictions = tf.multiply(routing_weights, caps2_predicted,
name="weighted_predictions")
weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True,
name="weighted_sum")
caps2_output_round_1 = squash(weighted_sum, axis=-2,
name="caps2_output_round_1")
#ROUND 2
caps2_output_round_1_tiled = tf.tile(
caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1],
name="caps2_output_round_1_tiled")
agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled,
transpose_a=True, name="agreement")
raw_weights_round_2 = tf.add(raw_weights, agreement,
name="raw_weights_round_2")
routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2,
dim=2,
name="routing_weights_round_2")
weighted_predictions_round_2 = tf.multiply(routing_weights_round_2,
caps2_predicted,
name="weighted_predictions_round_2")
weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2,
axis=1, keep_dims=True,
name="weighted_sum_round_2")
caps2_output_round_2 = squash(weighted_sum_round_2,
axis=-2,
name="caps2_output_round_2")
caps2_output = caps2_output_round_2
#ESTIMATE CLASS PROBABILITIES
def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None):
with tf.name_scope(name, default_name="safe_norm"):
squared_norm = tf.reduce_sum(tf.square(s), axis=axis,
keep_dims=keep_dims)
return tf.sqrt(squared_norm + epsilon)
y_proba = safe_norm(caps2_output, axis=-2, name="y_proba")
y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba")
y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred")
y = tf.placeholder(shape=[None], dtype=tf.int64, name="y")
m_plus = 0.9
m_minus = 0.1
lambda_ = 0.5
T = tf.one_hot(y, depth=caps2_n_caps, name="T")
caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True,
name="caps2_output_norm")
present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm),
name="present_error_raw")
present_error = tf.reshape(present_error_raw, shape=(-1, 10),
name="present_error")
absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus),
name="absent_error_raw")
absent_error = tf.reshape(absent_error_raw, shape=(-1, 10),
name="absent_error")
L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error,
name="L")
margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss")
loss = tf.add(margin_loss, 0, name="loss")
correct = tf.equal(y, y_pred, name="correct")
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy")
optimizer = tf.train.AdamOptimizer()
training_op = optimizer.minimize(loss, name="training_op")
init = tf.global_variables_initializer()
saver = tf.train.Saver()
n_epochs = 10
batch_size = 50
restore_checkpoint = True
n_iterations_per_epoch = mnist.train.num_examples // batch_size
n_iterations_validation = mnist.validation.num_examples // batch_size
best_loss_val = np.infty
checkpoint_path = "./my_capsule_network"
with tf.Session() as sess:
if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path):
saver.restore(sess, checkpoint_path)
else:
init.run()
for epoch in range(n_epochs):
for iteration in range(1, n_iterations_per_epoch + 1):
X_batch, y_batch = mnist.train.next_batch(batch_size)
# Run the training operation and measure the loss:
_, loss_train = sess.run(
[training_op, loss],
feed_dict={X: X_batch.reshape([-1, 28, 28, 1]),
y: y_batch})
print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format(
iteration, n_iterations_per_epoch,
iteration * 100 / n_iterations_per_epoch,
loss_train),
end="")
# At the end of each epoch,
# measure the validation loss and accuracy:
loss_vals = []
acc_vals = []
for iteration in range(1, n_iterations_validation + 1):
X_batch, y_batch = mnist.validation.next_batch(batch_size)
loss_val, acc_val = sess.run(
[loss, accuracy],
feed_dict={X: X_batch.reshape([-1, 28, 28, 1]),
y: y_batch})
loss_vals.append(loss_val)
acc_vals.append(acc_val)
print("\rEvaluating the model: {}/{} ({:.1f}%)".format(
iteration, n_iterations_validation,
iteration * 100 / n_iterations_validation),
end=" " * 10)
loss_val = np.mean(loss_vals)
acc_val = np.mean(acc_vals)
print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format(
epoch + 1, acc_val * 100, loss_val,
" (improved)" if loss_val < best_loss_val else ""))
# And save the model if it improved:
if loss_val < best_loss_val:
save_path = saver.save(sess, checkpoint_path)
best_loss_val = loss_val
n_iterations_test = mnist.test.num_examples // batch_size
with tf.Session() as sess:
saver.restore(sess, checkpoint_path)
loss_tests = []
acc_tests = []
for iteration in range(1, n_iterations_test + 1):
X_batch, y_batch = mnist.test.next_batch(batch_size)
loss_test, acc_test = sess.run(
[loss, accuracy],
feed_dict={X: X_batch.reshape([-1, 28, 28, 1]),
y: y_batch})
loss_tests.append(loss_test)
acc_tests.append(acc_test)
print("\rEvaluating the model: {}/{} ({:.1f}%)".format(
iteration, n_iterations_test,
iteration * 100 / n_iterations_test),
end=" " * 10)
loss_test = np.mean(loss_tests)
acc_test = np.mean(acc_tests)
print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format(
acc_test * 100, loss_test))
Поскольку модуль реконструкции не требуется, поэтому в функции окончательных потерь я установил потерю = 0 для части восстановления, чтобы оптимизатор работал только с потерями классификации.
loss = tf.add(margin_loss, 0, name="loss")
Теперь модуль классификации работает, ноТочность патетически низкая даже для набора данных MNIST. Я получил около 10% точности проверки. Может ли кто-нибудь объяснить мне, в чем здесь проблема, потому что в MNIST Капсульные сети хорошо классифицируются, как обсуждалось в Документ ?
Привет