Вот два пути к вопросу.Вы можете ожидать первого, однако это может быть не очень хорошим решением для вычисления confidence intervals of the median
, у него есть следующий код, который использует примеры данных, ссылаясь на matplotlib/cbook/__init__.py
.Поэтому Second намного лучше, чем любые другие, поскольку он хорошо протестирован, чем любой другой пользовательский код.
def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None,
autorange=False):
def _bootstrap_median(data, N=5000):
# determine 95% confidence intervals of the median
M = len(data)
percentiles = [2.5, 97.5]
bs_index = np.random.randint(M, size=(N, M))
bsData = data[bs_index]
estimate = np.median(bsData, axis=1, overwrite_input=True)
Первый:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
data = {
"Name": ['Sara', 'John', 'Mark', 'Peter', 'Kate'],
"Count": [20, 10, 5, 2, 5],
"Score": [2, 4, 7, 8, 7]
}
df = pd.DataFrame(data)
print(df)
def boxplot(values, freqs):
values = np.array(values)
freqs = np.array(freqs)
arg_sorted = np.argsort(values)
values = values[arg_sorted]
freqs = freqs[arg_sorted]
count = freqs.sum()
fx = values * freqs
mean = fx.sum() / count
variance = ((freqs * values ** 2).sum() / count) - mean ** 2
variance = count / (count - 1) * variance # dof correction for sample variance
std = np.sqrt(variance)
minimum = np.min(values)
maximum = np.max(values)
cumcount = np.cumsum(freqs)
print([std, variance])
Q1 = values[np.searchsorted(cumcount, 0.25 * count)]
Q2 = values[np.searchsorted(cumcount, 0.50 * count)]
Q3 = values[np.searchsorted(cumcount, 0.75 * count)]
'''
interquartile range (IQR), also called the midspread or middle 50%, or technically
H-spread, is a measure of statistical dispersion, being equal to the difference
between 75th and 25th percentiles, or between upper and lower quartiles,[1][2]
IQR = Q3 − Q1. In other words, the IQR is the first quartile subtracted from
the third quartile; these quartiles can be clearly seen on a box plot on the data.
It is a trimmed estimator, defined as the 25% trimmed range, and is a commonly used
robust measure of scale.
'''
IQR = Q3 - Q1
'''
The whiskers add 1.5 times the IQR to the 75 percentile (aka Q3) and subtract
1.5 times the IQR from the 25 percentile (aka Q1). The whiskers should include
99.3% of the data if from a normal distribution. So the 6 foot tall man from
the example would be inside the whisker but my 6 foot 2 inch girlfriend would
be at the top whisker or pass it.
'''
whishi = Q3 + 1.5 * IQR
whislo = Q1 - 1.5 * IQR
stats = [{
'label': 'Scores', # tick label for the boxplot
'mean': mean, # arithmetic mean value
'iqr': Q3 - Q1, # 5.0,
# 'cilo': 2.0, # lower notch around the median
# 'cihi': 4.0, # upper notch around the median
'whishi': maximum, # end of the upper whisker
'whislo': minimum, # end of the lower whisker
'fliers': [], # '\array([], dtype=int64)', # outliers
'q1': Q1, # first quartile (25th percentile)
'med': Q2, # 50th percentile
'q3': Q3 # third quartile (75th percentile)
}]
fs = 10 # fontsize
_, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6), sharey=True)
axes.bxp(stats)
axes.set_title('Default', fontsize=fs)
plt.show()
boxplot(df['Score'], df['Count'])
Второй:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = {
"Name": ['Sara', 'John', 'Mark', 'Peter', 'Kate'],
"Count": [20, 10, 5, 2, 5],
"Score": [2, 4, 7, 8, 7]
}
df = pd.DataFrame(data)
print(df)
labels = ['Scores']
data = df['Score'].repeat(df['Count']).tolist()
# compute the boxplot stats
stats = cbook.boxplot_stats(data, labels=labels, bootstrap=10000)
print(['stats :', stats])
fs = 10 # fontsize
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6), sharey=True)
axes.bxp(stats)
axes.set_title('Boxplot', fontsize=fs)
plt.show()
Ссылки: