Я пытаюсь обучить модель в Керасе сегментации изображений (U-Net) и начал с создания двух списков, содержащих мои поезда (и проверочные) изображения и маски.Затем я обучил модель, как показано ниже.
x_train_val = # list of images (nr_images, 256, 256, 3)
y_train_val = # list of masks (nr_images, 256, 256, 1)
# Define model
def standard_unet():
inputs = Input((img_size, img_size, 3))
s = Lambda(lambda x: x / 255) (inputs)
c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (inputs)
c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (c1)
p1 = MaxPooling2D((2, 2)) (c1)
c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (p1)
c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (c2)
p2 = MaxPooling2D((2, 2)) (c2)
c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (p2)
c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (c3)
p3 = MaxPooling2D((2, 2)) (c3)
c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (p3)
c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (c4)
p4 = MaxPooling2D(pool_size=(2, 2)) (c4)
c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (p4)
c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (c5)
u6 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (u6)
c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (c6)
u7 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (u7)
c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (c7)
u8 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (u8)
c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (c8)
u9 = Conv2DTranspose(8, (2, 2), strides=(2, 2), padding='same') (c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (u9)
c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (c9)
outputs = Conv2D(1, (1, 1), activation='sigmoid') (c9)
model = Model(inputs=[inputs], outputs=[outputs])
return model
# IoU metric
def mean_iou(y_true, y_pred):
prec = []
for t in np.arange(0.5, 1.0, 0.05):
y_pred_ = tf.to_int32(y_pred > t)
score, up_opt = tf.metrics.mean_iou(y_true, y_pred_, 2)
K.get_session().run(tf.local_variables_initializer())
with tf.control_dependencies([up_opt]):
score = tf.identity(score)
prec.append(score)
return K.mean(K.stack(prec), axis=0)
# Dice coef loss
def dice_coef(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def bce_dice_loss(y_true, y_pred):
return 0.5 * binary_crossentropy(y_true, y_pred) - dice_coef(y_true, y_pred)
# Model compiling
K.clear_session()
model = standard_unet()
model.compile(optimizer='adam', loss=bce_dice_loss, metrics=[mean_iou])
# Fitting
model.fit(x_train_val, y_train_val, validation_split=0.1, epochs=20)
Это работает точно так, как задумано, и я получаю приличные результаты, когда пытаюсь прогнозировать на тестовых изображениях.Поскольку я хочу увеличить количество тренировочных образов, я попытался использовать ImageDataGenerator
и train_generator
, используя следующую функцию.
# Runtime data augmentation
def get_train_test_augmented(x_data=x_train_val, y_data=y_train_val, validation_split=0.1, batch_size=32):
x_train, x_valid, y_train, y_valid = train_test_split(x_data, y_data,
train_size=1-validation_split,
test_size=validation_split)
data_gen_args = dict(rotation_range=45.,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
vertical_flip=True,
fill_mode='reflect') #use 'constant'??
x_datagen = ImageDataGenerator(**data_gen_args)
y_datagen = ImageDataGenerator(**data_gen_args)
x_datagen.fit(x_train, augment=True)
y_datagen.fit(y_train, augment=True)
x_train_augmented = x_datagen.flow(x_train, batch_size=batch_size, shuffle=True)
y_train_augmented = y_datagen.flow(y_train, batch_size=batch_size, shuffle=True)
# combine generators into one which yields image and masks
train_generator = zip(x_train_augmented, y_train_augmented)
return train_generator
Визуальный осмотр этих изображений показывает, что они содержат то, что я ожидаю (дополненоизображения и маски).Однако, когда я сейчас подгоняю свою модель, мои прогнозы всегда остаются пустыми.
train_generator = get_train_test_augmented()
model.fit_generator(train_generator, epochs=20)
Кто-нибудь сталкивался с такой же проблемой с прогнозированием пустых изображений или знает, как ее решить?Спасибо, BBQuercus.