что для массива A из N целых чисел возвращает наименьшее положительное целое число (больше 0), которого нет в A.
Например, для A = [1, 3, 6, 4, 1, 2], функция должна возвращать 5.
При заданном A = [1, 2, 3] функция должна возвращать 4.
При заданном A = [−1, −3], функция должна вернуть 1.
Напишите эффективный алгоритм для следующих предположений:
import java.util.*;
class Main {
/* Utility function that puts all non-positive
(0 and negative) numbers on left side of
arr[] and return count of such numbers */
static int segregate(int arr[], int size)
{
int j = 0, i;
for (i = 0; i < size; i++) {
if (arr[i] <= 0) {
int temp;
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
// increment count of non-positive
// integers
j++;
}
}
return j;
}
/* Find the smallest positive missing
number in an array that contains
all positive integers */
static int findMissingPositive(int arr[], int size)
{
int i;
// Mark arr[i] as visited by making
// arr[arr[i] - 1] negative. Note that
// 1 is subtracted because index start
// from 0 and positive numbers start from 1
for (i = 0; i < size; i++) {
int x = Math.abs(arr[i]);
if (x - 1 < size && arr[x - 1] > 0)
arr[x - 1] = -arr[x - 1];
}
// Return the first index value at which
// is positive
for (i = 0; i < size; i++)
if (arr[i] > 0)
return i + 1; // 1 is added becuase indexes
// start from 0
return size + 1;
}
/* Find the smallest positive missing
number in an array that contains
both positive and negative integers */
static int findMissing(int arr[], int size)
{
// First separate positive and
// negative numbers
int shift = segregate(arr, size);
int arr2[] = new int[size - shift];
int j = 0;
for (int i = shift; i < size; i++) {
arr2[j] = arr[i];
j++;
}
// Shift the array and call
// findMissingPositive for
// positive part
return findMissingPositive(arr2, j);
}
// main function
public static void main(String[] args)
{
int arr[] = { 0, 10, 2, -10, -20 };
int arr_size = arr.length;
int missing = findMissing(arr, arr_size);
System.out.println("The smallest positive missing number is " + missing);
}
}
}