Как я могу сохранить количество круговых диаграмм в списке? - PullRequest
0 голосов
/ 01 октября 2019

Я пытаюсь сделать функцию. Функция должна предоставить мне список круговых диаграмм после того, как я дам ей фрейм данных с оценками.

Я не вижу, что происходит не так, если бы вы могли немного подтолкнуть меня, чтобы я мог продолжить свой отчет:)

function_pie.chart<- function(data) {
   pie_charts <- list()
   for(i in 1:ncol(data)) {

       slices <- c(count_if(lt(5.5), data[,i]), count_if(gt(5.4),data[,i]))
       lbls <- c("Passed", "Failed")
       pct <- round(slices/sum(slices)*100)
       lbls <- paste(lbls, pct)
       lbls <- paste(lbls,"%",sep="")
       p1 <- eval(substitute(pie(slices,labels = lbls, 
                           col=rainbow(length(lbls)),
                           main=colnames(data[,i]))))
       pie_charts[[i]] <- p1
     }
}

Я ожидаю, что вывод будет списоктак что я могу легко построить изображение с несколькими круговыми диаграммами. Вывод с другой стороны дает мне эту ошибку:

"Ошибка в seq.int (x [i], x [i + 1], length.out = n): 'length.out'должно быть неотрицательным числом "

Пример данных:

data <- data.frame(
`BSTAT-THI Beschrijvende Statistiek` = c(7.3, 6.3, 5.8, 6.9, 5.7, 8.9, 6.1, 7, 8.1, 7.1, 6.2, 6.5, 7, 4.9, 9, 6.2, 5.6, 7.3, 6.6, 7.7, 8.3, 7.3, 7.1, 5.3, 9.3, 7.4, 6.6, 6.3, 7, 5.7, 6.7, 6.9, 6.9, 6.6, 5.3, 6.5, 5.7, 7.5, 6.3, 6.8, 7.3, 5.9, 7.1, 6.9, 7, 7.6, 7, 7.1, 6.5, 5.2, 5.8, 6.2, 6.4, 6.7, 5.3, 7.3, 7, 7.3, 8.6, 6.2, 5.8, 5.8, 6.6, 7.1, 6, 9.5, 7.3, 8, 7.3, 6.5, 9, 8.2, 7.3, 6.5, 7.8, 7.4, 6.9, 7.3, 6.2, 7.5, 7.6, 7.1, 6.3, 6.9, 7.5, 7.7, 8.3, 7.4, 5.2, 7, 6.6, 6.5, 7.5, 6.3, 8.1, 6.9, 6.8, 8.1, 7.4, 7.2, 9.2, 7.8, 6.6, 6.1, 8.3, 6.2, 9.2, 7.4, 9, 8.6, 7.1, 5.8, 6.5, 6.4, 5.7, 7.1, 7.5, 8.4, 5.9, 7.2, 8.8, 8.2, 7.6, 8.8, 8.9, 5.7, 7.1, 6, 7.7, 6.3, 5.6, 7.5),
`GRAAF-PRI Grafentheorie opdracht` = c(8.4, 7.5, 8.7, 9.3, 7.5, 8.8, 7.8, 6.8, 6.3, 7.2, 7.2, 7.6, 7.1, 7.1, 8.5, 9.1, 1.4, 8.6, 6.8, 9, 7.6, 8.5, 6.2, 8.7, 7.6, 6.4, 6.7, 7.3, 8.2, 7.6, 7.6, 7.5, 6.7, 8.6, 6.5, 8.2, 7.4, 8.9, 9.2, 9, 7.4, 8.1, 6.9, 7.2, 5.5, 6, 6.3, 5.9, 8.3, 8.8, 8.7, 8.3, 7.8, 6.3, 7.6, 8.2, 8.2, 7.5, 8.8, 7.5, 7.7, 7.7, 7.8, 7.2, 8.9, 6.9, 8, 9.7, 7.4, 7.9, 9.8, 7.9, 8.9, 5.9, 7.8, 7.8, 7.4, 7.8, 8.1, 8.6, 8.7, 8.4, 8.8, 8.4, 8.5, 6.3, 6.9, 8.6, 8.4, 7.5, 1, 8.4, 7.6, 6.9, 6.8, 6.4, 6.1, 8.9, 8.2, 7.9, 9.4, 9, 7.5, 6.4, 8.8, 6.8, 9.7, 9.7, 9.7, 6.3, 7.9, 7.2, 6.4, 7.6, 8.9, 7.4, 8.8, 5.9, 7.2, 8.6, 7.5, 6.4, 8.5, 5.3, 7.5, 6.3, 6.4, 7.9, 6.8, 7.8, 8.6, 9.2),
`GRAAF-THI Grafentheorie theorie` = c(6.6, 7, 7.3, 8.3, 6.3, 9.7, 5.9, 5.2, 4.5, 7.7, 5.9, 7.2, 6.7, 6.4, 10, 6.5, 7.3, 8.7, 7.4, 5.8, 9.3, 7, 9.4, 7.4, 8.2, 9.4, 7.4, 5.6, 7.1, 6.1, 5.5, 8.4, 10, 6.9, 6.3, 5.5, 5.3, 6.8, 6.2, 6.7, 8, 8.8, 7.4, 6.5, 7.4, 4.3, 6.1, 9.4, 5.7, 7.5, 6.5, 6.3, 9.3, 8.9, 6, 9.5, 5.6, 7, 10, 9.1, 7.4, 7.5, 6.1, 7.4, 3.5, 8.3, 9.7, 7.2, 7.9, 5.7, 7.8, 8, 6.5, 5.5, 7.2, 8.4, 6.5, 7, 6.6, 6.4, 8.6, 5.8, 3.2, 9.6, 6.5, 9.8, 7.2, 6.7, 6.7, 6.4, 6.1, 5.4, 8.1, 6.6, 7, 5.7, 6.7, 7.9, 5.3, 7.7, 7.7, 7.3, 7.8, 9.3, 9.8, 7.7, 8.2, 7.4, 7.6, 4.2, 5.5, 9, 7.1, 6, 6.1, 6.3, 6.7, 4.9, 5.4, 8.9, 9.8, 4.3, 8.4, 6, 8.6, 8.4, 7.3, 7.1, 7.5, 9, 7.1, 8.6),
`BWISK-TH|Basiswiskunde` = c(8.5, 9.3, 6.7, 5.5, 8.7, 8.6, 6.8, 6.1, 7.7, 5.2, 5.4, 8.9, 6.3, 6.1, 7.2, 6.3, 5.8, 9.4, 5.5, 3.8, 9.3, 9.4, 6, 7.3, 5.4, 6.3, 5.3, 5.7, 8.7, 6.9, 4.7, 6.6, 6.2, 6.9, 5.8, 4.8, 5.8, 9, 6.3, 6, 6.1, 8.1, 7.1, 6.2, 6.3, 8, 6.1, 6.3, 4.7, 7.7, 5.9, 6.2, 4.9, 6.6, 6.5, 8.4, 3.4, 7, 7.4, 8, 9.8, 8.5, 5.5, 7.1, 6.1, 5.3, 8.2, 4.2, 7.6, 5.3, 5.2, 9.5, 6, 5.9, 8.5, 5.9, 5.4, 6.2, 6.2, 9.2, 5.7, 3.3, 6.2, 8.3, 9.4, 6.5, 8.3, 9.4, 5.3, 6.3, 7.6, 6.2, 6.5, 6.6, 8.3, 6.1, 5.8, 7.6, 4, 8.5, 5.2, 8.5, 7.4, 8.5, 8.6, 6.4, 5.8, 3.8, 5.1, 7.7, 5.8, 7.8, 5.5, 7.1, 6, 6.1, 9.4, 4.2, 5.5, 5.4, 8.9, 7.7, 9, 4.3, 5.4, 4.7, 6.4, 8.5, 7.1, 8.2, 6.5, 7.2),
`CALEID-TH|Caleidoscoop theorie` = c("7.4000000000000004", "6.2999999999999998", "5.7000000000000002", "7.0999999999999996", "6.0999999999999996", "7.5", "5.5", "6", "5.0999999999999996", "6.5999999999999996", "6.2999999999999998", "6.5", "4.9000000000000004", "NA", "8.5", "6.9000000000000004", "3.2000000000000002", "7.2999999999999998", "4.2999999999999998", "4.7000000000000002", "7.9000000000000004", "8.6999999999999993", "5.2999999999999998", "6", "6.4000000000000004", "5.7999999999999998", "3.8999999999999999", "5.7999999999999998", "7.7000000000000002", "4.7999999999999998", "5.7000000000000002", "7.2000000000000002", "5.2999999999999998", "5.7999999999999998", "5.7999999999999998", "5.5", "5.7000000000000002", "8.9000000000000004", "6.4000000000000004", "5.7999999999999998", "4.7000000000000002", "5", "5.7000000000000002", "4.9000000000000004", "5.0999999999999996", "6", "5.7999999999999998", "5.5999999999999996", "6", "6.2999999999999998", "6.9000000000000004", "6.2000000000000002", "5", "5.5999999999999996", "NA", "8.5999999999999996", "4.2999999999999998", "7", "8.9000000000000004", "5.2000000000000002", "5.2000000000000002", "6", "5.5", "6.7999999999999998", "3.6000000000000001", "5.9000000000000004", "8.9000000000000004", "4.4000000000000004", "6.2000000000000002", "6.2000000000000002", "6.2000000000000002", "5.2999999999999998", "5.5999999999999996", "6", "7.5999999999999996", "6.5", "7.5", "4.2999999999999998", "6.2000000000000002", "8.5999999999999996", "6", "4.7000000000000002", "3.6000000000000001", "8.4000000000000004", "8.9000000000000004", "6.2999999999999998", "8.1999999999999993", "8.8000000000000007", "6.5999999999999996", "4.4000000000000004", "8", "6.5999999999999996", "6.0999999999999996", "6.0999999999999996", "8", "6.2000000000000002", "5.2999999999999998", "6.2000000000000002", "5.7999999999999998", "7.4000000000000004", "6.5", "8", "6.9000000000000004", "4.5", "7.5999999999999996", "6.0999999999999996", "6.0999999999999996", "4.7999999999999998", "6", "5.5999999999999996", "5", "5.4000000000000004", "4.4000000000000004", "5.4000000000000004", "6.2999999999999998", "7.4000000000000004", "9", "6.2000000000000002", "5.5", "6.2000000000000002", "7.7999999999999998", "6", "7", "5.9000000000000004", "6.2000000000000002", "4.2999999999999998", "7.0999999999999996", "5.4000000000000004", "7.5999999999999996", "5", "5.7999999999999998", "6.9000000000000004"),
`COVA1-PRI Communicatieve vaardigheden 1` = c("7", "6", "6", "7.5", "5.5", "7.5", "6", "8", "7.5", "7.5", "6", "6", "7", "6.5", "8", "6.5", "NA", "6.5", "6", "7.5", "7", "7.5", "5.5", "6.5", "6.5", "5", "6", "6", "7", "6", "7.5", "6", "5", "7.5", "6.5", "7.5", "NA", "7.5", "7", "8.5", "8", "6", "7", "8", "6.5", "7.5", "7", "5", "7.5", "6.5", "7.5", "8", "7.7000000000000002", "5.5", "6", "7.5", "7.5", "6.5", "7.5", "6.5", "6", "5.5", "6", "6", "5.5", "6", "8", "6.5", "7.5", "5.5", "6", "7", "8", "8.5", "7.5", "8", "7", "7.5", "8.5", "7.5", "8.5", "7.5", "5.5", "7.5", "7.5", "6", "6.5", "7", "7", "8", "6.5", "7", "8", "NA", "6", "8", "6.5", "8", "7.5", "6.5", "6", "7.5", "7.5", "6.5", "7.5", "6.5", "6.5", "6.5", "6", "8", "6.5", "6", "6", "6", "7", "6", "7.5", "6.5", "NA", "8", "6.5", "7.5", "7", "6", "6", "6.5", "6", "6", "6.5", "6.5", "6", "8"),
stringsAsFactors = FALSE)

1 Ответ

0 голосов
/ 01 октября 2019

Пятый и шестой столбцы в кадре данных имеют класс character. Для выполнения числовых операций, таких как length, вам нужно будет передать значение numeric. Кроме того, некоторые строки в пятом столбце имеют значения «NA». Мы также должны были бы обработать это.

Выполните следующее на вашем фрейме данных.

# Convert NA values to 0
data[data=="NA"] <- 0

# Convert columns from character to numeric
data[[5]] <- as.numeric(data[[5]])
data[[6]] <- as.numeric(data[[6]])

РЕДАКТИРОВАТЬ: Просто обнаружил, что вы не можете сохранить объект круговой диаграммы в переменные виспользовать позже. Одна из возможностей для вас - использовать предоставленный метод здесь . Другой вариант - использовать plotly.

# Updated function using plotly

library(plotly)

plotfunc <- function(data) {
    pie_charts <- list()
    for(i in 1:ncol(data)) {

        slices <- c(count_if(lt(5.5), data[,i]), count_if(gt(5.4),data[,i]))
        lbls <- c("Passed", "Failed")
        pct <- round(slices/sum(slices)*100)
        lbls <- paste(lbls, pct)
        lbls <- paste(lbls,"%",sep="")
        pie_charts[[i]] <- plot_ly(labels = lbls, values = slices, type = 'pie')
    }
    pie_charts
}

# Pass the dataframe to the function

plots <- plotfunc(data)

# The 'plots' array will have individual plots
# This will print the first plot
plots[[1]]

# The second...and so on
plots[[2]]

Надеюсь, это понятно!

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...