Я применил выпадение в реализации tenorflow 3-knn. Но я получил ошибку из-за переменной place_prob.
TypeError: Невозможно интерпретировать ключ feed_dict как Tensor: Невозможно преобразовать int в Tensor.
Я написал 2 функции: forward_propagation (которая реализует прямое распространение) и модель (которые обучаютпараметры по вашей модели). Вот краткая реализация двух функций:
Как я могу повлиять на значение keep_prob из функции model для функции forward_propagation, чтобы обучить модель?
def forward_propagation(X, parameters, keep_prob):
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
#keep_prob = tf.placeholder(dtype=tf.float64)
### with keep_drop
Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
A1 = tf.nn.dropout(A1, keep_prob)
Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, A1) + b2
A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
A2 = tf.nn.dropout(A2, keep_prob)
Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3, A2) + b3
### with keep_drop
return Z3
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, num_epochs = 1500, minibatch_size = 32, keep_prob = 1, seed = 0):
ops.reset_default_graph()
tf.set_random_seed(seed)
seed = seed
(n_x, m) = X_train.shape
n_y = Y_train.shape[0] # n_y : output size
costs = [] # To keep track of the cost
# Create Placeholders of shape (n_x, n_y)
### START CODE HERE ### (1 line)
X, Y = create_placeholders(n_x, n_y)
keep_prob_ = tf.constant(keep_prob, dtype=tf.float32, name="keep_prob_")
### END CODE HERE ###
# Initialize parameters
parameters = initialize_parameters()
# Forward propagation: Build the forward propagation in the tensorflow graph
Z3 = forward_propagation(X, parameters, keep_prob)
# Cost = loss function: Add cost function to tensorflow graph
cost = compute_cost( Z3=Z3, Y=Y)
# Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)
# Initialize all the variables
init = tf.global_variables_initializer()
# Start the session to compute the tensorflow graph
with tf.Session() as sess:
# Run the initialization
sess.run(init)
# Do the training loop
for epoch in range(num_epochs):
epoch_cost = 0. # Defines a cost related to an epoch
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = fct_utils.random_mini_batches(X_train, Y_train,
minibatch_size, seed)
for minibatch in minibatches:
# Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
_ , minibatch_cost = sess.run([optimizer, cost],
feed_dict={Y:minibatch_Y,
X:minibatch_,
keep_prob:keep_prob_})
epoch_cost += minibatch_cost / num_minibatches
# Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost)
# lets save the parameters in a variable
parameters = sess.run(parameters)
print ("Parameters have been trained!")