Я скопировал код Python2 в Python3 и получил эту ошибку. Разница лишь в том, что Python2 включает в себя только 4 акции, но код Python3 получил 15 из них. Есть идеи, как от этого избавиться?
Код Pyhton2: -> https://github.com/tthustla/efficient_frontier/blob/master/Efficient%20_Frontier_implementation.ipynb
Код Python3 ->
`def portfolio_annualised_performance(weights, mean_returns, cov_matrix):
returns = np.sum(mean_returns*weights ) *252
std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252)
return std, returns`
`
def random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate):
results = np.zeros((3,num_portfolios))
weights_record = []
for i in range(num_portfolios):
weights = np.random.random(4)
weights /= np.sum(weights)
weights_record.append(weights)
portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, mean_returns, cov_matrix)
results[0,i] = portfolio_std_dev
results[1,i] = portfolio_return
results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev
return results, weights_record
returns = table.pct_change()
mean_returns = returns.mean()
cov_matrix = returns.cov()
num_portfolios = 25000
risk_free_rate = 0.0675
def display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate):
results, weights = random_portfolios(num_portfolios,mean_returns, cov_matrix, risk_free_rate)
max_sharpe_idx = np.argmax(results[2])
sdp, rp = results[0,max_sharpe_idx], results[1,max_sharpe_idx]
max_sharpe_allocation = pd.DataFrame(weights[max_sharpe_idx],index=table.columns,columns=['allocation'])
max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation]
max_sharpe_allocation = max_sharpe_allocation.T
min_vol_idx = np.argmin(results[0])
sdp_min, rp_min = results[0,min_vol_idx], results[1,min_vol_idx]
min_vol_allocation = pd.DataFrame(weights[min_vol_idx],index=table.columns,columns=['allocation'])
min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation]
min_vol_allocation = min_vol_allocation.T
print("-")*80
print("Maximum Sharpe Ratio Portfolio Allocation\n")
print("Annualised Return:"), round(rp,2)
print("Annualised Volatility:"), round(sdp,2)
print("\n")
print("max_sharpe_allocation")
print("-")*80
print("Minimum Volatility Portfolio Allocation\n")
print("Annualised Return:"), round(rp_min,2)
print("Annualised Volatility:"), round(sdp_min,2)
print("\n")
print("min_vol_allocation")
plt.figure(figsize=(10, 7))
plt.scatter(results[0,:],results[1,:],c=results[2,:],cmap='YlGnBu', marker='o', s=10, alpha=0.3)
plt.colorbar()
plt.scatter(sdp,rp,marker='*',color='r',s=500, label='Maximum Sharpe ratio')
plt.scatter(sdp_min,rp_min,marker='*',color='g',s=500, label='Minimum volatility')
plt.title('Simulated Portfolio Optimization based on Efficient Frontier')
plt.xlabel('annualised volatility')
plt.ylabel('annualised returns')
plt.legend(labelspacing=0.8)
display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate)
*ValueError: operands could not be broadcast together with shapes (16,) (4,)*