Я тренируюсь с составлением резюме статьи. Я построил что-то, используя скрипт ниже. Я хотел бы экспортировать модель и использовать ее для развертывания, но не могу найти способ обойти ее.
Вот сценарий для анализатора.
#import necessary libraries
import re
import gensim
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
file = open("somefile.txt","r")
data=file.readlines()
file.close()
#define preprocessing steps
#lower case
#remove everything inside []
#remove 's
#fetch only ascii characters
def preprocessor(text):
newString = text.lower()
newString = re.sub("[\(\[].*?[\)\]]", "", newString)
newString = re.sub("'s","",newString)
newString = re.sub("[^'0-9.a-zA-Z]", " ", newString)
tokens=newString.split()
return (" ".join(tokens)).strip()
#call above function
text=[]
for i in data:
text.append(preprocessor(i))
all_sentences=[]
for i in text:
sentences=i.split(".")
for i in sentences:
if(i!=''):
all_sentences.append(i.strip())
# tokenizing the sentences for training word2vec
tokenized_text = []
for i in all_sentences:
tokenized_text.append(i.split())
#define word2vec model
model_w2v = gensim.models.Word2Vec(
tokenized_text,
size=200, # desired no. of features/independent variables
window=5, # context window size
min_count=2,
sg = 0, # 1 for cbow model
hs = 0,
negative = 10, # for negative sampling
workers= 2, # no.of cores
seed = 34)
#train word2vec
model_w2v.train(tokenized_text, total_examples= len(tokenized_text), epochs=model_w2v.epochs)
#define function to obtain sentence embedding
def word_vector(tokens, size):
vec = np.zeros(size).reshape((1, size))
count = 0.
for word in tokens:
try:
vec += model_w2v[word].reshape((1, size))
count += 1.
except KeyError: # handling the case where the token is not in vocabulary
continue
if count != 0:
vec /= count
return vec
#call above function
wordvec_arrays = np.zeros((len(tokenized_text), 200))
for i in range(len(tokenized_text)):
wordvec_arrays[i,:] = word_vector(tokenized_text[i], 200)
# similarity matrix
sim_mat = np.zeros([len(wordvec_arrays), len(wordvec_arrays)])
#compute similarity score
for i in range(len(wordvec_arrays)):
for j in range(len(wordvec_arrays)):
if i != j:
sim_mat[i][j] = cosine_similarity(wordvec_arrays[i].reshape(1,200), wordvec_arrays[j].reshape(1,200))[0,0]
#Generate a graph
nx_graph = nx.from_numpy_array(sim_mat)
#compute pagerank scores
scores = nx.pagerank(nx_graph)
#sort the scores
sorted_x = sorted(scores.items(), key=lambda kv: kv[1],reverse=True)
sent_list=[]
for i in sorted_x:
sent_list.append(i[0])
#extract top 10 sentences
num=10
summary=''
for i in range(num):
summary=summary+all_sentences[sent_list[i]]+'. '
print(summary)
Я хочу иметь экспортированную модель, которую позже смогу передать в API колб. Мне нужна помощь с этим.