Я пытаюсь прочитать данные из GCS и записать данные в Pub / Sub после обработки данных. Однако появляется следующая ошибка
Processing stuck in step s12/SplittableProcess for at least 05m00s without outputting or completing in state windmill-read at
java.lang.StringCoding.decode(StringCoding.java:215) at java.lang.String.<init>(String.java:463) at
java.lang.String.<init>(String.java:515) at org.apache.beam.sdk.coders.StringUtf8Coder.readString(StringUtf8Coder.java:61) at
org.apache.beam.sdk.coders.StringUtf8Coder.decode(StringUtf8Coder.java:100) at org.apache.beam.sdk.coders.StringUtf8Coder.decode(
StringUtf8Coder.java:90) at org.apache.beam.sdk.coders.StringUtf8Coder.decode(StringUtf8Coder.java:37) at
org.apache.beam.sdk.io.fs.ResourceIdCoder.decode(ResourceIdCoder.java:47) at org.apache.beam.sdk.io.fs.MetadataCoder.decodeBuilder(
MetadataCoder.java:62) at org.apache.beam.sdk.io.fs.MetadataCoder.decode(MetadataCoder.java:58) at
org.apache.beam.sdk.io.fs.MetadataCoder.decode(MetadataCoder.java:36) at
org.apache.beam.sdk.values.TimestampedValue$TimestampedValueCoder.decode(TimestampedValue.java:116) at
org.apache.beam.sdk.values.TimestampedValue$TimestampedValueCoder.decode(TimestampedValue.java:88) at
org.apache.beam.sdk.coders.IterableLikeCoder.decode(IterableLikeCoder.java:124) at org.apache.beam.sdk.coders.IterableLikeCoder.decode
(IterableLikeCoder.java:60) at org.apache.beam.sdk.coders.Coder.decode(Coder.java:159) at org.apache.beam.sdk.coders.KvCoder.decode(
KvCoder.java:82) at org.apache.beam.sdk.coders.KvCoder.decode(KvCoder.java:36) at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.decode(WindowedValue.java:592) at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.decode(WindowedValue.java:529) at
org.apache.beam.runners.dataflow.worker.WindmillStateReader.consumeTagValue(WindmillStateReader.java:633) at
org.apache.beam.runners.dataflow.worker.WindmillStateReader.consumeResponse(WindmillStateReader.java:523) at
org.apache.beam.runners.dataflow.worker.WindmillStateReader.startBatchAndBlock(WindmillStateReader.java:420) at
org.apache.beam.runners.dataflow.worker.WindmillStateReader$WrappedFuture.get(WindmillStateReader.java:313) at
org.apache.beam.runners.dataflow.worker.WindmillStateInternals$WindmillValue.read(WindmillStateInternals.java:385) at org.apache.beam.runners.dataflow.worker.repackaged.org.apache.beam.runners.core.SplittableParDoViaKeyedWorkItems$ProcessFn.processElement(
SplittableParDoViaKeyedWorkItems.java:375) at org.apache.beam.runners.dataflow.worker.repackaged.org.apache.beam.runners.core.Splittab
leParDoViaKeyedWorkItems$ProcessFn$DoFnInvoker.invokeProcessElement(Unknown Source)
Вот мои коды
PCollection<String> lines = pipeline.apply("readDataFromGCS",
TextIO.read().from(sourcePath + "/gcspath")
.watchForNewFiles(Duration.standardMinutes(3), Watch.Growth.never()));
PCollection<KV<String, Map<String, String>>> filter_event = lines.apply("ParseAndFilterFn", ParDo.of(new ParseAndFilterFn()));
PCollection<KV<String, Map<String, String>>> minute_window_events = filter_event.apply("MinuteFixwindow",
Window.<KV<String, Map<String, String>>>into(FixedWindows.of(Duration.standardMinutes(3)))
.triggering(AfterProcessingTime
.pastFirstElementInPane()
.plusDelayOf(Duration.standardMinutes(2)))
.discardingFiredPanes()
.withAllowedLateness(Duration.standardMinutes(1))
);
minute_window_events.apply("GroupByUserId", Combine.perKey(new MaxFn()))
.apply("AssembleUserMsg", MapElements.into(TypeDescriptors.kvs(TypeDescriptors.strings(), TypeDescriptors.strings()))
.via((KV<String, Map<String, String>> kv) ->
KV.of(String.format("userid:%s,level:%s,ts:%s", kv.getKey(), kv.getValue().get("level"), kv.getValue().get("ts")), kv.getValue().get("ts"))))
.apply("ConvertToSimpleMsg", ParDo.of(new SimpleStamp()))
.apply("WriteToPubSub",
PubsubIO.writeMessages()
.to(TOPICSTR)
);
...
static class MaxFn extends Combine.CombineFn<Map<String, String>, Map<String, String>, Map<String, String>> {
@Override
public Map<String, String> createAccumulator() {
return new HashMap<>();
}
@Override
public Map<String, String> addInput(Map<String, String> mutableAccumulator, Map<String, String> input) {
int level = (int) Float.parseFloat((input.get("level")));
if (level > (int) Float.parseFloat(mutableAccumulator.getOrDefault("level", "0"))) {
mutableAccumulator.put("level", input.get("level"));
mutableAccumulator.put("ts", input.get("ts"));
}
return mutableAccumulator;
}
@Override
public Map<String, String> mergeAccumulators(Iterable<Map<String, String>> accumulators) {
HashMap<String, String> m = new HashMap<>();
for (Map<String, String> next : accumulators) {
String level = m.getOrDefault("level", "0");
String next_level = next.getOrDefault("level", "0");
if ((int) Float.parseFloat(level) < (int) Float.parseFloat(next_level)) {
m.put("level", next.get("level"));
m.put("ts", next.get("ts"));
}
}
return m;
}
@Override
public Map<String, String> extractOutput(Map<String, String> accumulator) {
return accumulator;
}
}
И конвейер в потоке данных
Кажется, трубопровод застрял в GroupByUserId
? Как решить эту проблему или что-то мне не хватает?
Версия луча: 2.16.0