Я пытаюсь построить нейронную сеть, которая решает логические ворота. Для моей первой попытки я использовал логический вентиль AND с 2 входами и обучил NN для всех 4 вариантов (00,01,10,11).
Если я скажу NN решить проблему для всех 4 вариантов, это не удается. Это дает 0,47 для (11), когда он должен дать almos 1 в качестве ответа. Я использую сигмовидную функцию.
Итак, по сути, она не может решить обученные данные.
Я также пытался использовать логические элементы с 4 входами, которые выводят только 1, если только 2 входа равны 1. Я дал ему 9 вариаций в качестве тренировочных данных. Для остальных 7 данных не удается предсказать 4 из них.
Почему это происходит?
Спасибо.
from numpy import exp, array, random, dot
class NeuronLayer():
def __init__(self, number_of_neurons, number_of_inputs_per_neuron):
self.synaptic_weights = 2 *
random.random((number_of_inputs_per_neuron, number_of_neurons)) - 1
class NeuralNetwork():
def __init__(self, layer1, layer2):
self.layer1 = layer1
self.layer2 = layer2
# The Sigmoid function, which describes an S shaped curve.
# We pass the weighted sum of the inputs through this function to
# normalise them between 0 and 1.
def __sigmoid(self, x):
return 1 / (1 + exp(-x))
# The derivative of the Sigmoid function.
# This is the gradient of the Sigmoid curve.
# It indicates how confident we are about the existing weight.
def __sigmoid_derivative(self, x):
return x * (1 - x)
# We train the neural network through a process of trial and error.
# Adjusting the synaptic weights each time.
def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in range(number_of_training_iterations):
# Pass the training set through our neural network
output_from_layer_1, output_from_layer_2 = self.think(training_set_inputs)
# Calculate the error for layer 2 (The difference between the desired output
# and the predicted output).
layer2_error = training_set_outputs - output_from_layer_2
layer2_delta = layer2_error * self.__sigmoid_derivative(output_from_layer_2)
# Calculate the error for layer 1 (By looking at the weights in layer 1,
# we can determine by how much layer 1 contributed to the error in layer 2).
layer1_error = layer2_delta.dot(self.layer2.synaptic_weights.T)
layer1_delta = layer1_error * self.__sigmoid_derivative(output_from_layer_1)
# Calculate how much to adjust the weights by
layer1_adjustment = training_set_inputs.T.dot(layer1_delta)
layer2_adjustment = output_from_layer_1.T.dot(layer2_delta)
# Adjust the weights.
self.layer1.synaptic_weights += layer1_adjustment
self.layer2.synaptic_weights += layer2_adjustment
# The neural network thinks.
def think(self, inputs):
output_from_layer1 = self.__sigmoid(dot(inputs, self.layer1.synaptic_weights))
output_from_layer2 = self.__sigmoid(dot(output_from_layer1, self.layer2.synaptic_weights))
return output_from_layer1, output_from_layer2
# The neural network prints its weights
def print_weights(self):
print(" Layer 1 (4 neurons, each with 3 inputs):")
print(self.layer1.synaptic_weights)
print(" Layer 2 (1 neuron, with 4 inputs):")
print(self.layer2.synaptic_weights)
if __name__ == "__main__":
#Seed the random number generator
random.seed(1)
# Create layer 1 (4 neurons, each with 3 inputs)
layer1 = NeuronLayer(1, 2)
# Create layer 2 (a single neuron with 4 inputs)
layer2 = NeuronLayer(1, 1)
# Combine the layers to create a neural network
neural_network = NeuralNetwork(layer1, layer2)
print("Stage 1) Random starting synaptic weights: ")
neural_network.print_weights()
# The training set. We have 7 examples, each consisting of 3 input values
# and 1 output value.
training_set_inputs = array([[0, 0], [0, 1], [1, 0], [1, 1]])
training_set_outputs = array([[0, 0, 0, 1]]).T
#training_set_outputs = array([[1, 1, 1, 1, 1, 1, 1]]).T
# Train the neural network using the training set.
# Do it 60,000 times and make small adjustments each time.
neural_network.train(training_set_inputs, training_set_outputs, 60000)
print("Stage 2) New synaptic weights after training: ")
neural_network.print_weights()
# Test the neural network with a new situation.
print("Stage 3) Considering a new situation [1, 1] -> ?: ")
for x in range(0,2):
for y in range(0, 2):
hidden_state, output = neural_network.think(array([x, y]))
print(output)