Я пытаюсь запустить классификатор для сгенерированного набора вложений. Ошибка выглядит следующим образом:
Epoch 1/2
---------------------------------------------------------------------------
InternalError Traceback (most recent call last)
<ipython-input-11-d859ddc5fde5> in <module>
2 y = np.zeros((2, ))
3
----> 4 model.fit(x, y, epochs=2)
~/.virtualenvs/pan_demo/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, max_queue_size, workers, use_multiprocessing, **kwargs)
878 initial_epoch=initial_epoch,
879 steps_per_epoch=steps_per_epoch,
--> 880 validation_steps=validation_steps)
881
882 def evaluate(self,
~/.virtualenvs/pan_demo/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py in model_iteration(model, inputs, targets, sample_weights, batch_size, epochs, verbose, callbacks, val_inputs, val_targets, val_sample_weights, shuffle, initial_epoch, steps_per_epoch, validation_steps, mode, validation_in_fit, **kwargs)
327
328 # Get outputs.
--> 329 batch_outs = f(ins_batch)
330 if not isinstance(batch_outs, list):
331 batch_outs = [batch_outs]
~/.virtualenvs/pan_demo/lib/python3.6/site-packages/tensorflow/python/keras/backend.py in __call__(self, inputs)
3074
3075 fetched = self._callable_fn(*array_vals,
-> 3076 run_metadata=self.run_metadata)
3077 self._call_fetch_callbacks(fetched[-len(self._fetches):])
3078 return nest.pack_sequence_as(self._outputs_structure,
~/.virtualenvs/pan_demo/lib/python3.6/site-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/.virtualenvs/pan_demo/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InternalError: Blas GEMM launch failed : a.shape=(2, 128), b.shape=(128, 44), m=2, n=44, k=128
[[{{node layer_1/MatMul}}]]
[[{{node loss_1/output_loss/broadcast_weights/assert_broadcastable/is_valid_shape/has_valid_nonscalar_shape/has_invalid_dims/concat}}]]
Модель выглядит следующим образом:
model = tf.keras.Sequential([
tf.keras.layers.Dense(44, activation=tf.nn.relu, name='layer_1', input_shape=(128, )),
# tf.keras.layers.Dropout(0.3, name='layer_2'),
tf.keras.layers.Dense(num_of_employees, activation=tf.nn.softmax, name='output')
])
opt = tf.keras.optimizers.SGD(lr=0.34)
model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.build()
x = np.zeros((2, 128))
y = np.zeros((2, ))
model.fit(x, y, epochs=2)
Кроме того, было бы очень удобно, если бы можно было научиться читать последнюю часть трассировки стека, гдеупоминается node loss_1/output_loss...