Я создаю приложение для прогнозирования ML на основе этого набора данных по раку молочной железы .
В раскрывающемся меню я хочу выбрать одну из моих моделей и запустить примеркуи верните обновленную матрицу путаницы (тепловая карта).
Я планирую расширить сценарий на таблицы, кривые roc, кривые обучения и т. д. (т. е. многоканальный обратный вызов )- но сначала я хочу, чтобы эта часть работала, прежде чем реализовывать другие элементы.
Я пробовал разные вещи.
Например, перед текущим кодом (ниже) я пытался вызвать модель из выпадающего меню напрямую, а затем выполнить все вычисления cm внутри результатов обратного вызова. в AttributeError: у объекта 'str' нет атрибута 'fit' :
@app.callback(Output('conf_matrix', 'figure'), [Input('dropdown-5', 'value')])
def update_cm_matix(model):
class_names=[0,1]
fitModel = model.fit(X_train, y_train)
y_pred = fitModel.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
return {'data': [go.Heatmap(x=class_names, y=class_names, z=cm, showscale=True, colorscale='blues')],
'layout': dict(width=350, height=280, margin={'t': 10},
xaxis=dict(title='Predicted class', tickvals=[0, 1]),
yaxis=dict(title='True class', tickvals=[0, 1], autorange='reversed'))}
(замена app.callback и функции в приведенном ниже скрипте).
Текущая версия, с которой я борюсь:
# -*- coding: utf-8 -*-
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.feature_selection import RFE
import plotly.graph_objs as go
from dash.dependencies import Input, Output
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
server = app.server
app.config.suppress_callback_exceptions = True
df = pd.read_csv("breast_cancer.csv")
y = np.array(df.diagnosis.tolist())
data = df.drop('diagnosis', 1)
X = np.array(data.values)
scaler = StandardScaler()
X = scaler.fit_transform(X)
random_state = 42
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=random_state)
# First model: logistic model + optimize hyperparameters
log = LogisticRegression(random_state=random_state)
param_grid = {'penalty': ['l2', 'l1'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}
CV_log = GridSearchCV(estimator=log, param_grid=param_grid,, scoring='accuracy', verbose=1, n_jobs=-1)
CV_log.fit(X_train, y_train)
log_best_params = CV_log.best_params_
log_clf = LogisticRegression(C=log_best_params['C'], penalty=log_best_params['penalty'], random_state=random_state)
# Second model: logistic model with recursive features elimination (just for illustration purposes, other models will be included)
rfe_selector = RFE(log_clf)
# app layout
app.layout = html.Div([
html.Div([
dcc.Dropdown(
id='dropdown-5',
options=[{'label': 'Logistic', 'value': 'log_clf'},
{'label': 'RFE', 'value': 'rfe_selector'}],
value='log_clf',
style={'width': '150px', 'height': '35px', 'fontSize': '10pt'}
)], style={}),
html.Div([
dcc.Graph(id='conf_matrix')
])
])
# function to run selected model
def ClassTrainEval(model):
fitModel = model.fit(X_train, y_train)
y_pred = fitModel.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
return fitModel, y_pred, y_score, cm
models = [log_clf, rfe_selector]
class_names = [0,1]
# dash callback
@app.callback(Output('conf_matrix', 'figure'), [Input('dropdown-5', 'value')])
def update_cm_matix(model):
for model in models:
ClassTrainEval(model)
return {'data': [go.Heatmap(x=class_names, y=class_names, z=cm, showscale=True, colorscale='blues')],
'layout': dict(width=350, height=280, margin={'t': 10},
xaxis=dict(title='Predicted class', tickvals=[0, 1]),
yaxis=dict(title='True class', tickvals=[0, 1], autorange='reversed'))}
if __name__ == '__main__':
app.run_server(debug=True)
Где я получаю NameError: имя 'cm' не определено ошибка.
Я не совсем уверен, как двигаться вперед, чтобы заставить это работать - поэтому я надеюсь, что кто-то может направить меня в правильном направлении.
Спасибо!