У меня есть алгоритм, который на каждой итерации вычисляет средства для определенных групп (группы не меняют только свои значения).
Таблица значений -
d1 <- data.frame(x = sample(LETTERS, N, replace = TRUE),
y1=rnorm(N))
head(d1)
# x y1
# 1 H -0.7852538
# 2 G -0.6739159
# 3 V -1.7783771
# 4 L -0.2849846
# 5 I -0.1760284
# 6 V -0.2785826
Я могу рассчитать средние значения (несколькими способами: dplyr, data.table и tapply). У меня есть еще один data.frame, состоящий из двух столбцов с именами групп.
d2 <- data.frame('group.high' = sample(LETTERS, N * 2, replace = TRUE),
'group.low' = sample(LETTERS, N * 2, replace = TRUE))
head(d2)
# group.high group.low
# 1 U L
# 2 K J
# 3 C Q
# 4 Q A
# 5 Q U
# 6 K W
Я хочу добавить к столбцам mean.high
и mean.better
средних значений каждой группы на основе d1
.
До сих пор я пробовал два варианта из dplyr
и data.table
. Мне пришлось использовать left_join дважды в любом из них. Они оба похожи по скорости.
microbenchmark(
dplyr = {
means <- tapply(d1$y1, INDEX = d1$x, FUN = mean)
### Solution 1
dplyr.d2 <- left_join(d2,data.frame('group.high' = names(means),
'mean.high' = means, stringsAsFactors = FALSE) ) %>%
left_join(., data.frame('group.low' = names(means),
'mean.low' = means, stringsAsFactors = FALSE))},
data.table = {
### Solution 2
d1 <- as.data.table(d1)
d2 <- as.data.table(d2)
means <- d1[ ,.(means = mean(y1)), by = x]
new.d2 <- data.table::merge.data.table(x = d2, y = means, by.x = 'group.high', by.y = 'x')
data.table.d2 <- data.table::merge.data.table(x = new.d2, y = means, by.x = 'group.low', by.y = 'x')
}
)
Unit: milliseconds
expr min lq mean median uq max neval cld
dplyr 34.0837 36.88650 53.22239 42.9227 47.50660 231.5066 100 a
data.table 40.2071 47.70735 87.46804 51.2517 59.05385 258.4999 100 b
Есть ли лучший способ? Как я могу ускорить расчет?
Как уже упоминалось в комментариях, существует итеративный процесс обновления значений. Вот пример.
N <- 10000
iterFuncDplyr <- function(d1, d2) {
dplyr.d2 <- left_join(d2,data.frame('group.high' = names(means),
'mean.high' = means, stringsAsFactors = FALSE) ) %>%
left_join(., data.frame('group.low' = names(means),
'mean.low' = means, stringsAsFactors = FALSE))
return(var(d1$y1))
}
iterFuncData <- function(d1, d2) {
means <- d1[ ,.(means = mean(y1)), by = x]
new.d2 <- data.table:::merge.data.table(x = d2, y = means, by.x = 'group.high', by.y = 'x')
data.table.d2 <- data.table:::merge.data.table(x = new.d2, y = means, by.x = 'group.low', by.y = 'x')
return(var(d1$y1))
}
d1 <- data.frame(x = sample(LETTERS, N, replace = TRUE),
y1=rnorm(N))
d2 <- data.frame('group.high' = sample(LETTERS, N * 2, replace = TRUE),
'group.low' = sample(LETTERS, N * 2, replace = TRUE))
library(data.table)
library(dplyr)
microbenchmark::microbenchmark(dplyr = {
temp.val <- 0
for (i in 1:10) {
d1$y1 <- temp.val + rnorm(N)
temp.val <- iterFuncDplyr(d1, d2)
}},
data.table = {
d1 <- as.data.table(d1)
d2 <- as.data.table(d2)
temp.val <- 0
for (i in 1:10) {
d1$y1 <- temp.val + rnorm(N)
temp.val <- iterFuncData(d1, d2)
}
}
)
Unit: milliseconds
expr min lq mean median uq max neval
dplyr 46.22904 50.67959 52.78275 51.96358 53.34825 108.2874 100
data.table 63.81111 67.13257 70.85537 69.85712 72.72446 127.4228 100