У меня есть Dataframe со значением столбца, которое выглядит следующим образом:
[
{
"OrderID" : "0",
"TimeStamp" : "2019-09-24 10:17:48 +0000",
"Screen" : "Home_Screen",
"StateVars" : "",
"Event" : "A"
},
{
"Event" : "B",
"TimeStamp" : "2019-09-24 10:17:38 +0000",
"Screen" : "Home_Screen",
"StateVars" : "",
"OrderID" : "0"
},
{
"OrderID" : "0",
"TimeStamp" : "2019-09-24 10:17:35 +0000",
"Screen" : "Home_Screen",
"StateVars" : "",
"Event" : "D"
},
{
"Event" : "V",
"TimeStamp" : "2019-09-24 10:17:33 +0000",
"Screen" : "Home_Screen",
"StateVars" : "",
"OrderID" : "0"
},
{
"OrderID" : "0",
"TimeStamp" : "2019-09-24 10:17:32 +0000",
"Screen" : "Home_Screen",
"StateVars" : "",
"Event" : "C"
}
]
Я хочу создать столбцы всех ключей. Итак, исходный фрейм данных выглядит следующим образом:
+----+------------+-------------+---------+---------------------------------------+----------------------------------------------------+-------------+------+------+------+------+------+-----+
| | O | v | S | I | EventLog | CustomerID | a | b | c | d | e | f |
+----+------------+-------------+---------+---------------------------------------+----------------------------------------------------+-------------+------+------+------+------+------+-----+
| 0 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | NaN | NaN | NaN | NaN | NaN | NaN |
| 1 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | NaN | NaN | NaN | NaN | NaN | NaN |
| 2 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | NaN | NaN | NaN | NaN | NaN | NaN |
| 3 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | NaN | NaN | NaN | NaN | NaN | NaN |
| 4 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 15 | NaN | NaN | NaN | NaN | NaN | NaN |
+----+------------+-------------+---------+---------------------------------------+----------------------------------------------------+-------------+------+------+------+------+------+-----+
И я ищу что-то вроде этого
+----+------------+-------------+---------+---------------------------------------+----------------------------------------------------+-------------+------+----------------------------+--------------+------------+------+
| | O | v | S | I | EventLog | CustomerID |OrdeID| TimeStamp |Screen | StarsVar |Event |
+----+------------+-------------+---------+---------------------------------------+----------------------------------------------------+-------------+------+----------------------------+--------------+------------+------+
| 0 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | 0 | 2019-09-24 10:17:33 +0000 | Home_Screen | NaN | A |
| 1 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | 0 | 2019-09-24 10:17:33 +0000 | Home_Screen | NaN | B |
| 2 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | 0 | 2019-09-24 10:17:33 +0000 | Home_Screen | NaN | C |
| 3 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | 0 | 2019-09-24 10:17:33 +0000 | Home_Screen | NaN | D |
| 4 | 1 | 0.4 | OS | 92D42D7E-68F0-4688-83C5-781920E05335 | [{'OrderID': '0', 'TimeStamp': '2019-09-24 10:... | 1 | 0 | 2019-09-24 10:17:33 +0000 | Home_Screen | NaN | E |
+----+------------+-------------+---------+---------------------------------------+----------------------------------------------------+-------------+------+----------------------------+--------------+------------+------+
не обязательно удалять столбцы, как показано в выводе выше.