У меня есть два объекта Kivy.Image в моем классе. На главном изображении показан основной поток с веб-камеры, а на другом показаны обучающие образцы, собранные из основного потока, процесс может быть выполнен, но мы сначала его запустили, прежде чем были потоки. он заблокировал мое приложение / вызвал его зависание, затем я представил потоки, которые он запускает, но он не обновляет основной поток и тот, который показывает собираемый обучающий образец.
Я пробовал несколько способов многопоточности в pythonно, кажется, я не могу понять это
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.button import Button
from kivy.app import App
import threading
import cv2
from kivy.uix.image import Image
from Clock_In import face as f
class example(App):
def build(self):
layout = FloatLayout()
self.user = Image()
self.trainingSample = Image(source="C://Users//SELINA//Project Clock-in//data//Images//face_avatar.jpg")
self.user.allow_stretch = True
self.user.keep_ratio = True
self.user.size_hint_x = 0.5
self.user.size_hint_y = 0.9
self.user.pos_hint = {"x":0.06, "y":0.2}
self.trainingSample.allow_stretch =False
self.trainingSample.keep_ratio = False
self.trainingSample.size_hint_x = None
self.trainingSample.size_hint_y = None
self.trainingSample.width =160
self.trainingSample.height=160
self.face_Recognition = f.Recognition()
self.capture = cv2.VideoCapture(0)
self.trainingSample.pos_hint = {"x":0.6, "y": 0.68}
self.btnText = Button(text="Collect Data", font_size=12, size_hint_y=None, size_hint_x=None, width = 150, height = 30, pos_hint= {"x":0.4, "y":0.6})
self.btnText.bind(on_press=self.cdata)
layout.add_widget(self.user)
layout.add_widget(self.trainingSample)
layout.add_widget(self.btnText)
return layout
#I have tried this
def cdata(self, instance):
threading.Thread(
target=self.another, daemon=True
).start()
def another(self, dt):
(self.im_width, self.im_height) = (160, 160)
self.count = 0
self.count_max = 10
while self.count < self.count_max:
ret = False
while(not ret):
(ret, frame) = self.capture.read()
if(not ret):
print("Couldn't run trying again")
height, width, channels = frame.shape
frame = cv2.flip(frame, 1, 0)
normal = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
normal = cv2.cvtColor(normal, cv2.COLOR_RGB2BGR)
if self.face_Recognition.identify(frame) is None:
faces = None
if self.face_Recognition.identify(frame) is not None:
faces, points = self.face_Recognition.identify(frame)
if faces is not None:
for face in faces:
face_bb = face.bounding_box.astype(int)
yourface = normal[max(0, face_bb[1]):min(face_bb[3], normal.shape[0]-1), max(0, face_bb[0]):min(face_bb[2], normal.shape[1]-1)]
face_resize = cv2.resize(yourface, (self.im_width, self.im_height))
cv2.rectangle(frame, (face_bb[0], face_bb[1]), (face_bb[2], face_bb[3]),(220,20,60), 1)
cv2.putText(frame, 'user', (face_bb[0], face_bb[3] + 20),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (220,20,60),1, cv2.LINE_AA)
print("Saving training sample " + str(self.count)+"/"+str(self.count_max))
cv2.imwrite('example' + str(self.count) + '.png', face_resize)
self.trainingSample.source = 'example' + str(self.count) + '.png'
self.count += 1
buf1 = cv2.flip(frame, 0)
buf = buf1.tostring()
texture1 = Texture.create(size=(frame.shape[1], frame.shape[0]), colorfmt='bgr')
texture1.blit_buffer(buf, colorfmt='bgr', bufferfmt='ubyte')
self.user.texture = texture1
if __name__ == '__main__':
example().run()
Я хочу, чтобы self.user обновлялся по мере того, как он принимает изображение лица пользователя, а также показывает пример снятого изображения пользователя в обучающем образце. Изображение вДругой поток в цикле while, я использовал Дэвид Сэндберг FaceNet из Github, если вы можете попробовать использовать haarcascade или что-то простое, проблема не в распознавании, а в том, что kivy виджеты обновляются для пользователя в режиме реального времени по мере сбора обучающей выборки