Не уверен, что самый быстрый из возможных, но это векторизованное решение намного быстрее:
import numpy as np
import time
np.random.seed(0)
rows = 2000
cols = 500
ngroup = 5
data = np.random.rand(rows,cols)
groups = np.random.randint(ngroup, size=(rows,cols)) + 10*np.tile(np.arange(cols),(rows,1))
t = time.perf_counter()
# Flatten the data
dataf = data.ravel()
groupsf = groups.ravel()
# Sort by group
idx_sort = groupsf.argsort()
datafs = dataf[idx_sort]
groupsfs = groupsf[idx_sort]
# Find group bounds
idx = np.nonzero(groupsfs[1:] > groupsfs[:-1])[0]
idx = np.concatenate([[0], idx + 1, [len(datafs)]])
# Sum by groups
a = np.add.reduceat(datafs, idx[:-1])
# Count group elements
c = np.diff(idx)
# Compute group means
m = a / c
# Repeat means and counts to match data shape
means = np.repeat(m, c)
counts = np.repeat(c, c)
# Compute variance and std
v = np.add.reduceat(np.square(datafs - means), idx[:-1]) / c
s = np.sqrt(v)
# Repeat stds
stds = np.repeat(s, c)
# Compute result values
resultfs = (datafs - means) / stds
# Undo sorting
idx_unsort = np.empty_like(idx_sort)
idx_unsort[idx_sort] = np.arange(len(idx_sort))
resultf = resultfs[idx_unsort]
# Reshape back
result = np.reshape(resultf, data.shape)
print(time.perf_counter() - t)
# 0.09932469999999999
# Previous method to check result
t = time.perf_counter()
result_orig= np.zeros(data.shape)
f = lambda x: (x-np.average(x))/np.std(x)
for group in np.unique(groups):
location = np.where(groups == group)
group_data = data[location[0],location[1]]
result_orig[location[0],location[1]] = f(group_data)
print(time.perf_counter() - t)
# 6.0592527
print(np.allclose(result, result_orig))
# True
РЕДАКТИРОВАТЬ: Чтобы вычислить медианы, вы можете сделать что-то следующим образом:
# Flatten the data
dataf = data.ravel()
groupsf = groups.ravel()
# Sort by group and value
idx_sort = np.lexsort((dataf, groupsf))
datafs = dataf[idx_sort]
groupsfs = groupsf[idx_sort]
# Find group bounds
idx = np.nonzero(groupsfs[1:] > groupsfs[:-1])[0]
idx = np.concatenate([[0], idx + 1, [len(datafs)]])
# Count group elements
c = np.diff(idx)
# Meadian index
idx_median1 = c // 2
idx_median2 = idx_median1 + (c % 2) - 1
idx_median1 += idx[:-1]
idx_median2 += idx[:-1]
# Get medians
meds = 0.5 * (datafs[idx_median1] + datafs[idx_median2])
Хитрость здесь в том, чтобы использовать np.lexsort
вместо просто np.argsort
для сортировки по группам и значениям. meds
будет массивом с медианой каждой группы, затем вы можете использовать np.repeat
для него, как для средств, так и для чего угодно еще.