OP pseudo_voigt
не отформатирован должным образом, но, похоже, тоже не ошибается. Хотя существуют и другие определения pseudo_voigt
. Ниже я реализовал один из Википедии (ссылка в коде), который обычно дает хорошие результаты. Глядя на логарифмическую шкалу, однако, это не так хорошо с этими данными. Я также использовал комплексное определение, чтобы получить истинное Voigtusing функции Fedeeva
, такой как lmfit
.
. Код выглядит следующим образом:
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from scipy.special import wofz
from scipy.integrate import quad
def cauchy(x, x0, g):
return 1. / ( np.pi * g * ( 1 + ( ( x - x0 ) / g )**2 ) )
def gauss( x, x0, s):
return 1./ np.sqrt(2 * np.pi * s**2 ) * np.exp( - (x-x0)**2 / ( 2 * s**2 ) )
# https://en.wikipedia.org/wiki/Voigt_profile#Numeric_approximations
def pseudo_voigt( x, x0, s, g, a, y0 ):
fg = 2 * s * np.sqrt( 2 * np.log(2) )
fl = 2 * g
f = ( fg**5 + 2.69269 * fg**4 * fl + 2.42843 * fg**3 * fl**2 + 4.47163 * fg**2 * fl**3 + 0.07842 * fg * fl**4+ fl**5)**(1./5.)
eta = 1.36603 * ( fl / f ) - 0.47719 * ( fl / f )**2 + 0.11116 * ( f / fl )**3
return y0 + a * ( eta * cauchy( x, x0, f) + ( 1 - eta ) * gauss( x, x0, f ) )
def voigt( x, s, g):
z = ( x + 1j * g ) / ( s * np.sqrt( 2. ) )
v = wofz( z ) #Feddeeva
out = np.real( v ) / s / np.sqrt( 2 * np.pi )
return out
def fitfun( x, x0, s, g, a, y0 ):
return y0 + a * voigt( x - x0, s, g )
if __name__ == '__main__':
xlist = np.array( [ 33.05, 33.1 , 33.15, 33.2 , 33.25, 33.3 , 33.35, 33.4 , 33.45, 33.5 , 33.55, 33.6 , 33.65, 33.7 , 33.75, 33.8 , 33.85, 33.9 , 33.95, 34. , 34.05, 34.1 , 34.15, 34.2 , 34.25, 34.3 , 34.35, 34.4 , 34.45, 34.5 , 34.55, 34.6 , 34.65, 34.7 , 34.75, 34.8 , 34.85, 34.9 , 34.95, 35. , 35.05, 35.1 , 35.15, 35.2 , 35.25, 35.3 , 35.35, 35.4 , 35.45, 35.5 , 35.55, 35.6 , 35.65, 35.7 , 35.75, 35.8 , 35.85, 35.9 , 35.95, 36. , 36.05, 36.1 , 36.15, 36.2 , 36.25, 36.3 , 36.35, 36.4 , 36.45])
ylist = np.array( [ 4569, 4736, 4610, 4563, 4639, 4574, 4619, 4473, 4488, 4512, 4474, 4640, 4691, 4621, 4671, 4749, 4657, 4751, 4921, 5003, 5071, 5041, 5121, 5165, 5352, 5304, 5408, 5393, 5544, 5625, 5859, 5851, 6155, 6647, 7150, 7809, 9017, 10967, 14122, 19529, 28029, 39535, 50684, 55730, 52525, 41356, 30015, 20345, 14368, 10736, 9012, 7765, 7064, 6336, 6011, 5806, 5461, 5283, 5224, 5221, 4895, 4980, 4895, 4852, 4889, 4821, 4872, 4802, 4928])
sol, err = curve_fit( pseudo_voigt, xlist, ylist, p0=[ 35.25,.05,.05, 30000., 3000] )
solv, errv = curve_fit( fitfun, xlist, ylist, p0=[ 35.25,.05,.05, 20000., 3000] )
print solv
xth = np.linspace( xlist[0], xlist[-1], 500)
yth = np.fromiter( ( pseudo_voigt(x ,*sol) for x in xth ), np.float )
yv = np.fromiter( ( fitfun(x ,*solv) for x in xth ), np.float )
print( quad(pseudo_voigt, xlist[0], xlist[-1], args=tuple( sol ) ) )
print( quad(fitfun, xlist[0], xlist[-1], args=tuple( solv ) ) )
solvNoBack = solv
solvNoBack[-1] =0
print( quad(fitfun, xlist[0], xlist[-1], args=tuple( solvNoBack ) ) )
fig = plt.figure()
ax = fig.add_subplot( 1, 1, 1 )
ax.plot( xlist, ylist, marker='o', linestyle='', label='data' )
ax.plot( xth, yth, label='pseudo' )
ax.plot( xth, yv, label='voigt with hack' )
ax.set_yscale('log')
plt.legend( loc=0 )
plt.show()
, обеспечивая:
[3.52039054e+01 8.13244777e-02 7.80206967e-02 1.96178358e+04 4.48314849e+03]
(34264.98814344757, 0.00017531957481189617)
(34241.971907301166, 0.0002019796740206914)
(18999.266974139795, 0.0002019796990069267)
Из графика видно, что pseudo_voigt
не очень хорош. Интеграл, однако, не сильно отличается. Учитывая тот факт, что подгонка оптимизирует chi**2
, это не такой уж большой сюрприз.