Я новичок в pytorch и ищу вашу помощь в реализации lstm. У меня есть однослойный LSTM, за которым следуют полностью подключенный слой и сигмоид (реализующий трассировку Deep Knowledge).
Примеры входных и выходных пар следующие: input =
[[1, 0,0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0,1]]
output = [[1, 0],
[0, 0],
[0, 1],
[-1, -1]]
У меня есть следующий код для LSTM и я рассчитываю вычислить двоичную перекрестную энтропию как потерю. Однако потери не уменьшаются в течение эпох. Я проследил несколько блогов, чтобы реализовать это, и я думаю, что это правильно. Что-то не так с кодом, который у меня есть? Было бы здорово, если бы вы могли потратить пару минут на просмотр кода и помочь подсказать, если с ним что-то не так.
class BuildModel(nn.Module):
on_gpu = False
def __init__(self, num_skills, batch_size = 2, lstm_units = 200):
super(BuildModel, self).__init__()
self.lstm_units = lstm_units
self.batch_size = batch_size
self.output_dim = num_skills
self.input_dim = num_skills * 2
self.seq_len = seq_len
self.__build_model()
def __build_model(self):
self.lstm = nn.LSTM(
input_size = self.input_dim,
hidden_size = self.lstm_units,
num_layers = 1,
batch_first = True,
)
self.hidden_to_skills = nn.Linear(self.lstm_units, self.output_dim)
def init_hidden(self):
hidden_a = torch.randn(1, self.batch_size, self.lstm_units)
hidden_b = torch.randn(1, self.batch_size, self.lstm_units)
if self.on_gpu:
hidden_a = hidden_a.cuda()
hidden_b = hidden_b.cuda()
hidden_a = Variable(hidden_a, requires_grad=True)
hidden_b = Variable(hidden_b, requires_grad=True)
return (hidden_a, hidden_b)
def forward(self, X, X_lengths):
self.hidden = self.init_hidden()
batch_size, seq_len, _ = X.size()
## X is of shape batch_size, sequence_length, num_skills*2
X = torch.nn.utils.rnn.pack_padded_sequence(X, X_lengths, batch_first=True, enforce_sorted=False)
X, self.hidden = self.lstm(X, self.hidden)
X, _ = torch.nn.utils.rnn.pad_packed_sequence(X, batch_first=True)
# Transfer data from (batch_size, seq+len, lstm_units) --> (batch_size * seq_len, lstm_units)
X = X.contiguous()
X = X.view(-1, X.shape[2])
X = self.hidden_to_skills(X)
X = torch.nn.functional.sigmoid(X)
# return the predictions
return X
def loss(self, Y_hat, Y, threshold, seq_len):
#flatten labels
Y = Y.view(-1)
Y_hat = Y_hat.view(-1, seq_len * self.output_dim * self.batch_size)
mask = (Y > -1).float()
mask_long = (Y > -1).long()
nb_tokens = int(torch.sum(mask).item())
Y_hat = Y_hat[range(Y_hat.shape[0])] * mask
Y_hat = Y_hat.reshape(-1)
Y = Y[range(Y.shape[0])] * mask_long
Y = Y.float()
Y_hat = (Y_hat > 0.0).float() * 1.0
loss = torch.nn.BCELoss()
ce_loss = loss(Y_hat, Y)
return Variable(ce_loss, requires_grad = True)
### For training
learning_rate = .1
total_step = len(loader)
model = BuildModel(num_skills, 2, 200)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
overall_loss = 0.0
for i, (X, y, lengths, seq_len) in enumerate(loader):
X = torch.from_numpy(X).float()
y = torch.from_numpy(y).long()
outputs = model(X, lengths)
loss = model.loss(outputs, y, 0.5, seq_len)
optimizer.zero_grad()
loss.backward()
optimizer.step()