#fill -999 to NAs
X = X_train.fillna(-999)
y = y_train.fillna(-999)
import lightgbm as lgb
import xgboost as xgb
NFOLDS = 8
folds = KFold(n_splits=NFOLDS)
#====================================
xgb_submission=sample_submission.copy()
xgb_submission['isFraud'] = 0
import xgboost as xgb
from sklearn.metrics import roc_auc_score
for fold_n, (train_index, valid_index) in enumerate(folds.split(X)):
X_train_, X_valid = X.iloc[train_index], X.iloc[valid_index]
y_train_, y_valid = y.iloc[train_index], y.iloc[valid_index]
#xgbclf.fit(X_train_,y_train_)
rf_clf1 = RandomForestClassifier(n_estimators=300, max_depth = 10, min_samples_leaf=8, \
min_samples_split=8, random_state=0)
rf_clf1.fit(X_train,y_train_)
pred = rf_clf1.predict(X_test)
print(pred)
Я проверил Х или у есть Нэн, но нетно это дает ошибку с ValueError: Input содержит NaN, бесконечность или значение, слишком большое для dtype ('float32').
> print(type(X),type(y))
> <class 'pandas.core.frame.DataFrame'> <class'pandas.core.series.Series'>