У меня есть класс, который создает конвейер извлечения объектов и соответствует модели логистической регрессии. Входные данные представляют собой набор строковых данных в структуре DF. Класс ItemSelector просто возвращает столбец, содержащий чистые данные из исходного фрейма данных, а затем передает его в CountVectorizer и селектор Kbest. Если я удаляю Kbest, этот конвейер работает:
from sklearn.base import BaseEstimator, TransformerMixin
class ItemSelector(BaseEstimator, TransformerMixin):
# returns a single column from a DF
def __init__(self, key):
self.key = key
def fit(self, x, y=None):
return self
def transform(self, data_dict):
return data_dict[self.key]
class LogisticRegressionWithWordFeatures(object):
def __init__(self):
self.model = LogisticRegression()
def fit(self, df, labels):
self.pipeline = self.get_preprocessing_pipeline(df)
fitted_df = self.pipeline.fit_transform(df)
self.model.fit(fitted_df, labels)
return self
def predict(self, df):
fitted_df = self.pipeline.transform(df)
y = self.model.predict(fitted_df)
return y
def get_preprocessing_pipeline(self, data_frame):
"""
Get data frame containing features and labels from raw feature input DF.
:param input_file: input DF
"""
process_and_join_features = Pipeline([
('features', FeatureUnion([
('count_lemma_features', Pipeline([
('selector', ItemSelector(key='clean_Invoice_Description')),
('counts', CountVectorizer(analyzer="word", stop_words='english'))]))])),
('reducer', SelectKBest(chi2, k=1000))
])
return process_and_join_features
Если я пытаюсь подогнать / преобразовать на основе этого конвейера, я получаю эту ошибку:
model = LogisticRegressionWithWordFeatures()
model.fit(train_data, train_labels)
test_y = model.predict(test_data)
>>>
TypeError Traceback (most recent call last)
<ipython-input-183-536a1c9c0a09> in <module>
1 b_logistic_regression_with_hypers_bow_clean = LogisticRegressionWithWordFeatures()
----> 2 b_logistic_regression_with_hypers_bow_clean = b_logistic_regression_with_hypers_bow_clean.fit(b_ebay_train_data, b_ebay_train_labels)
3 b_ebay_y_with_hypers_bow_clean = b_logistic_regression_with_hypers_bow_clean.predict(b_ebay_test_data)
4 b_gold_y_with_hypers_bow_clean = b_logistic_regression_with_hypers_bow_clean.predict(gold_df)
<ipython-input-181-6974b6ea2a5b> in fit(self, df, labels)
6 def fit(self, df, labels):
7 self.pipeline = self.get_preprocessing_pipeline(df)
----> 8 fitted_df = self.pipeline.fit_transform(df)
9 self.model.fit(fitted_df, labels)
10 return self
~/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)
391 return Xt
392 if hasattr(last_step, 'fit_transform'):
--> 393 return last_step.fit_transform(Xt, y, **fit_params)
394 else:
395 return last_step.fit(Xt, y, **fit_params).transform(Xt)
~/anaconda3/lib/python3.7/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
551 if y is None:
552 # fit method of arity 1 (unsupervised transformation)
--> 553 return self.fit(X, **fit_params).transform(X)
554 else:
555 # fit method of arity 2 (supervised transformation)
TypeError: fit() missing 1 required positional argument: 'y'
Очевидно, проблема в том, что обучениеэтикетки не попадают в конвейер. Я попытался добавить другой селектор элементов для меток обучения:
process_and_join_features = Pipeline([
('features', FeatureUnion([
('count_lemma_features', Pipeline([
('selector', ItemSelector(key='clean_Invoice_Description')),
('counts', CountVectorizer(analyzer="word", stop_words='english'))])),
('labels', ItemSelector(key='Expense_Category'))])),
('reducer', SelectKBest(chi2, k=1000))
])
return process_and_join_features
Но это вызывает ключевую ошибку для метки (Expense_Category), даже если этот столбец присутствует в данных обучения.
ЕслиЯ делаю это шаг за шагом, это работает:
item_selector = ItemSelector(key='clean_Invoice_Description').fit(train_data)
count_selector = CountVectorizer(analyzer="word", stop_words='english')
k_best = SelectKBest(chi2, k=1000)
invoice_desc = item_selector.transform(train_data)
invoice_desc = count_selector.fit_transform(invoice_desc)
reduced_desc = k_best.fit_transform(invoice_desc, train_labels)
print(reduced_desc.shape)
>>> (6130, 1000)
Проблема с пошаговым способом заключается в том, что в других столбцах есть другие функции, которые я хотел бы использовать вместе с ними,и pipe предоставляет хороший способ сделать это без необходимости вручную объединять их.