У меня есть столбец в моем фрейме данных, состоящий из списков, я хотел бы объединить весь список из каждой строки в один единственный список в одной ячейке.
Вот как выглядит столбец
df.terms.dropna()
0 [Algorithms, Brain, Brain Mapping, Computer Si...
4 [Adult, Algorithms, Cerebrovascular Circulatio...
5 [Algorithms, Brain, Brain Mapping, Hemodynamic...
7 [Adult, Algorithms, Brain, Cerebrovascular Cir...
10 [Animals, Base Composition, Birds, Genetic Var...
Name: mesh_terms, dtype: object
Мне удалось объединить их и получить
0 [[Algorithms, Brain, Brain Mapping, Computer S...],[Adult, Algorithms, Cerebrovascular Circulatio...],[Algorithms, Brain, Brain Mapping, Hemodynamic...],[list_index_7],[list_index_10]]
Name: mesh_terms, dtype: object
Но я хочу длинный список, содержащий все строки, такие как [Algorithms, Brain, Brain Mapping, Computer Si..., ... , Animals, Base Composition, Birds, Genetic Var...]
Я пытался использовать itertools,но он все еще дал мне вложенный список, но он работает на этом примере
list2d = [[1,2,3],[4,5,6], [7], [8,9]]
list(itertools.chain.from_iterable(list2d))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Также попытался flattened = [val for sublist in list_of_lists for val in sublist]
, но он тоже не заработал.
ПОЖАЛУЙСТА, ПОМОГИТЕ!
Вот полный список всех подсписков
['Algorithms', 'Brain', 'Brain Mapping', 'Computer Simulation', 'Hemodynamics', 'Humans', 'Linear Models', 'Magnetic Resonance Imaging', 'Models, Neurological'] ['Adult', 'Algorithms', 'Cerebrovascular Circulation', 'Computer Simulation', 'Female', 'Functional Laterality', 'Globus Pallidus', 'Humans', 'Image Processing, Computer-Assisted', 'Magnetic Resonance Imaging', 'Male', 'Models, Neurological', 'Nonlinear Dynamics', 'Reinforcement (Psychology)', 'Reward', 'Young Adult'] ['Algorithms', 'Brain', 'Brain Mapping', 'Hemodynamics', 'Humans', 'Image Interpretation, Computer-Assisted', 'Linear Models', 'Magnetic Resonance Imaging', 'Models, Neurological'] ['Adult', 'Algorithms', 'Brain', 'Cerebrovascular Circulation', 'Female', 'Hemodynamics', 'Humans', 'Image Interpretation, Computer-Assisted', 'Magnetic Resonance Imaging', 'Male', 'Statistics, Nonparametric', 'Young Adult'] ['Animals', 'Base Composition', 'Birds', 'Genetic Variation', 'Genome', 'Genomics', 'Mammals', 'Molecular Sequence Data', 'Phylogeny', 'Reptiles', 'Retroelements', 'Tandem Repeat Sequences']