Я впервые использую keras.sequential для создания модели свертки. Ниже приведен код, и я не понимаю, что означает сводная часть.
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from keras.models import Sequential
from keras import optimizers
model = Sequential()
model.add(Conv2D(16, kernel_size=(3, 3), activation='relu',
input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(),
metrics=['accuracy'])
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 148, 148, 16) 448
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 74, 74, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 72, 72, 64) 9280
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 36, 36, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 34, 34, 128) 73856
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 17, 17, 128) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 36992) 0
_________________________________________________________________
dense_1 (Dense) (None, 512) 18940416
_________________________________________________________________
dense_2 (Dense) (None, 1) 513
=================================================================
Total params: 19,024,513
Trainable params: 19,024,513
Non-trainable params: 0