R - lrm коэффициент логистической регрессии / отношение шансов? - PullRequest
1 голос
/ 07 ноября 2019

Я использую функцию lrm из пакета rms, чтобы получить:

> model_1 <- lrm(dependent_variable ~ var1+ var2 + var3, data = merged_dataset, na.action="na.delete")
> print(model_1)
Logistic Regression Model

 lrm(dependent_variable ~ var1+ var2 + var3, data = merged_dataset, na.action="na.delete")

                      Model Likelihood     Discrimination    Rank Discrim.    
                         Ratio Test           Indexes           Indexes       
 Obs          6046    LR chi2     21.97    R2       0.005    C       0.531    
  0           3151    d.f.           11    g        0.138    Dxy     0.062    
  1           2895    Pr(> chi2) 0.0246    gr       1.148    gamma   0.062    
 max |deriv| 1e-13                         gp       0.034    tau-a   0.031    
                                           Brier    0.249                     

                            Coef    S.E.   Wald Z Pr(>|Z|)
 Intercept                  -0.0752 0.0348 -2.16  0.0305  
 var1                        10.6916 2.1476  0.32  0.7474  
 var2                       -0.1595 0.4125 -0.39  0.6990  
 var3                       -0.0563 0.0266 -2.12  0.0341  

Мой вопрос - это коэффициенты шансов коэффициентов или нет? Если нет, то как я могу получить коэффициенты отношения шансов?

1 Ответ

1 голос
/ 07 ноября 2019

Привет, вот подход. Обратите внимание, что будет полезно, если вы включите некоторые образцы данных для работы с нами.

Создание некоторых поддельных данных ...

fake_data <- matrix(rnorm(300), ncol = 3)

y_start <- 1/(1+exp(-(fake_data %*% c(1, .3, 2))))

y <- rbinom(100, size = 1, prob = y_start)

dat <- data.frame(y, fake_data)

Теперь мы подходим к модели:

library(rms)

fit <- lrm(y ~ ., data = dat)

Коэффициенты модели будут в форме лог-шансов (все еще в логарифмическом масштабе)

# Log-odds
coef(fit)

 Intercept         X1         X2         X3 
0.03419513 0.92890297 0.48097414 1.86036897 

Если вы хотите перейти в шансы, нам нужно использовать возведение в степень для переноса из лог-шкалы.

# Odds
exp(coef(fit))

Intercept        X1        X2        X3 
 1.034787  2.531730  1.617649  6.426107 

Таким образом, в этом примере вероятность увеличения Y увеличивается на 2,5 с увеличением X1.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...