Попытка создать Wordcloud из текстового документа с помощью RShiny (включая Text Mining Code). Когда я выполнил эту команду, я получил следующую ошибку: Ошибка в наследовании: отсутствует аргумент "FUN" без значения по умолчанию
library("arules")
library("devtools")
library("tm")
library("textclean")
library("katadasaR")
library("tokenizers")
library("wordcloud")
library("stringr")
library("dplyr")
library("SnowballC")
library("arulesViz")
require(katadasaR)
library(shiny)
ui = fluidPage(# theme = "bootstrap.css",
# Application title
titlePanel(windowTitle = "A4MD-Association Rule Mining",
title = div(
column(3, img(src = 'task2_logo2.png', width = '30%')),
column(12, h1('A4MD: Association Analysis for Machine Damage'))
)
),
hr(),
br(),
tabsetPanel(
tabPanel("User Guide",
br(),
sidebarLayout(
sidebarPanel(width = 3,
h2("Instalasi", align = "center"),
h4("Shiny tersedia di CRAN,", align = "center",br(),"Instal di R Console PC-mu!"),align = "center",
br(),
br(),
br(),
img(src = "Rstudio.png", width= '90%', style="display: block; margin-left: auto; margin-right: auto;"),
h4("Shiny is a produck of", align = "center"), h4(a(href="", "Rstudio"),align = "center")
),
mainPanel(
h2("Panduan Penggunaan Aplikasi"),
hr(),
h4("DESKRIPSI"),
"- Aplikasi ini digunakan untuk menemukan dan menganalisis asosiasi kerusakan pada mesin industri.", br(),
"- Pola-pola asosiasi kerusakan mesin digali dari kumpulan data-data historis kerusakan mesin.", br(),
hr(),
h4("LICENSI"),
"- Aplikasi ini", br(),
hr(),
h4("FORMAT DATA"),
"- Data yang diinput harus berformat.",strong(".CSV"), br()
)
)),
tabPanel("Data Visualization",
br(),
#Sidebar with file input
sidebarLayout(
sidebarPanel(width = 3,
fileInput(inputId = "data1", label = "Input your file!", buttonLabel = "Browse...",
placeholder = "No file selected"),
selectInput(inputId = 'dropdown', label = 'Choose separator',
choices = c('Comma' = ',','Semicolon' = ';')),
checkboxInput(inputId = 'data2', label = "Checklist if you want to read first row as column's name!"),
br(),
downloadButton(outputId = 'dwn', label = 'Download Data')
),
# OUTPUT DISPLAY
mainPanel(tableOutput(outputId = "value"))
)
),
tabPanel("Data Dimension Reduction",
br(),
#Sidebar with file input
sidebarLayout(
sidebarPanel(width = 3,
selectInput(inputId = 'dropdown_column', label = "Choose column's name!",choices = c('')),
sliderInput("spr", "Sparse Number", 1,50,50),
actionButton("up", "Check Sparsity")
),
# OUTPUT DISPLAY
mainPanel(plotOutput("sparsity")
)
)),
tabPanel("Word Frequency", "contents"),
tabPanel("Wordclouds", "contents"),
tabPanel("Rule Mining", "contents"),
tabPanel("Rule Visualization", "contents")
))
server = function(input, output, session){
output$dwn = downloadHandler(
filename = function(){
paste('Download', Sys.Date(), sep = '_')
},
content = function(downloadfolder){
write.csv(iris, downloadfolder, row.names = FALSE)
#file.copy('task2_logo.PNG',con)
})
x = reactive({
if(is.null(input$data1)){ # R will not read data if it has not been uploaded
return('Input your dataset')
}
read.csv(file = input$data1$datapath, header = input$data2, sep = input$dropdown)
})
observe({
rm = names(x())
updateSelectInput(session = session, inputId = 'dropdown_column', choices = rm)
})
output$value = renderTable({
# INPUT FOR data1
x()
})
#OUTPUT DDR
wc = reactive({
input$up
isolate({
withProgress({
setProgress(message = "Processing corpus...")
wcf <- input$data1
if (!is.null(wcf)){
dataClean = readLines(wcf$datapath)
}
else {
return("A word cloud is a image made of words that together resemble a cloudy shape.
The size word shows how important is e.g. how often it appears in a text- its frequency.
People typically use word cloud to easily produce a summary of a large document")
}
#Codingan Text Mining
#Text Preprocessing
# 1. Case Folding
myCorpus <- Corpus(VectorSource(dataClean))
myCorpus <- tm_map(myCorpus, tolower)
# 2. Tokenizing and Stopwords Removal
myStopword <- readLines("bahasa_stopwords.txt")
dataClean <- dataClean %>%
tokenize_words(stopwords = myStopword)
# 3. Stemming
stemming <- function(x) {
paste(lapply(x, katadasaR), collapse = " ")
}
dataClean <- lapply(dataClean, stemming)
# Term Frequent and Text Representation
# 1. Create a Term-Document Matrix (TDM)
myCorpus <- Corpus(VectorSource(dataClean))
tfidf <- tm_map(myCorpus,
control = list(removePunctuation = TRUE,
stopwords = FALSE,
tolower = FALSE,
stemming = FALSE,
removeNumbers = FALSE,
removePunctuation = TRUE,
stripWhitespace = TRUE))
# Term Weighting (TF-IDF)
TFIDF <- weightTfIdf(tfidf)
# Reduksi Dimensi Data
dtm <- removeSparseTerms(tfidf, 0.99)
weightTfIdf(tfidf)
})
})
})
wordcloud_rep <- repeatable(wordcloud())
output$sparsity <- renderPlot({
withProgress({
setProgress(message = "Creating Wordcloud...")
wdata <- wc()
wordcloud(wdata, min.freq = input$spr, scale = c(4,1),random.order = TRUE,
rot.per = 0.35, use.r.layout = FALSE, colors = brewer.pal(8,"Dark2"))
})
})
}
# Read R Script become R Shiny Script
shinyApp(ui = ui, server = server)
Я пробовал различные методы, но он все еще делаетне работает, и я прочитал, связанные с воспроизводимыми примерами, но не понимаю.
Пожалуйста, кто-нибудь Помогите мне,
Спасибо