Один путь был бы с scipy.spatial.distance.squareform
-
from scipy.spatial.distance import squareform
def diag_inverted(n):
l = n*(n-1)//2
out = squareform(np.random.randn(l))
out[np.tri(len(out),k=-1,dtype=bool)] *= -1
return out
Другой с array-assignment
и masking
-
def diag_inverted_v2(n):
l = n*(n-1)//2
m = np.tri(n, k=-1, dtype=bool)
out = np.zeros((n,n),dtype=float)
out[m] = np.random.randn(l)
out[m.T] = -out.T[m.T]
return out
Пробные прогоны -
In [148]: diag_inverted(2)
Out[148]:
array([[ 0. , -0.97873798],
[ 0.97873798, 0. ]])
In [149]: diag_inverted(3)
Out[149]:
array([[ 0. , -2.2408932 , -1.86755799],
[ 2.2408932 , 0. , 0.97727788],
[ 1.86755799, -0.97727788, 0. ]])
In [150]: diag_inverted(4)
Out[150]:
array([[ 0. , -0.95008842, 0.15135721, -0.4105985 ],
[ 0.95008842, 0. , 0.10321885, -0.14404357],
[-0.15135721, -0.10321885, 0. , -1.45427351],
[ 0.4105985 , 0.14404357, 1.45427351, 0. ]])