Ниже моя unet модель, я загружал изображения с помощью kerasImageDataGenerator с разрешением 360X480 dim, но при компиляции модели. но модель соблюдается, если dim 128x128, 256X256, чтобы загрузить этот dim, какие параметры нужно изменить и почему выдается ошибка объединения, у меня есть фильтры и соответствующие им параметры.
IMG_HEIGHT=360
IMG_WIDTH=480
IMG_CHANNELS=3
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
c1 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (inputs)
c1 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c1)
c1 = Dropout(0.1) (c1)
p1 = MaxPooling2D((2, 2)) (c1)
c2 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p1)
c2 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c2)
c2 = Dropout(0.1) (c2)
p2 = MaxPooling2D((2, 2)) (c2)
c3 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p2)
c3 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c3)
c3 = Dropout(0.2) (c3)
p3 = MaxPooling2D((2, 2)) (c3)
c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p3)
c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c4)
c4 = Dropout(0.2) (c4)
p4 = MaxPooling2D(pool_size=(2, 2)) (c4)
c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p4)
c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c5)
c5 = Dropout(0.3) (c5)
u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same') (c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u6)
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c6)
c6 = Dropout(0.2) (c6)
u7 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same') (c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u7)
c7 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c7)
c7 = Dropout(0.2) (c7)
u8 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u8)
c8 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c8)
c8 = Dropout(0.1) (c8)
u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u9)
c9 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c9)
c9 = Dropout(0.1) (c9)
outputs = Conv2D(3, (1, 1), activation='sigmoid') (c9)
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss='binary_crossentropy',metrics = ['accuracy'])
model.summary()
Выдается следующая ошибка:
'inputs with matching shapes '
361 'except for the concat axis. '
--> 362 'Got inputs shapes: %s' % (input_shape))
363
364 def _merge_function(self, inputs):
ValueError: A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 44, 60, 128), (None, 45, 60, 128)]