Вот метод, который дает мне 5-кратное ускорение на примере
import numpy as np
def categorical_transition(mat, t_mat, k=4):
transformed_mat = mat.copy()
cat_counts = np.bincount(mat.reshape(-1,))
for i in range(k):
rand_vec = np.random.multinomial(1, t_mat[i], cat_counts[i])
choice = np.where(rand_vec)[1]
transformed_mat[mat == i] = choice
return transformed_mat
def pp(mat,t_mat):
ps = t_mat.cumsum(1)
ps /= ps[:,-1:]
return (np.random.random(mat.shape+(1,))<ps[mat]).argmax(-1)
# load data
mat = np.random.choice(4, (16000, 256))
t_mat = np.random.random((4, 4))
# normalize transition matrix
for i in range(t_mat.shape[0]):
t_mat[i] = t_mat[i] / t_mat[i].sum()
transformed_mat = categorical_transition(mat, t_mat)
transformed_mat_pp = pp(mat, t_mat)
# check correctness
from pprint import pprint
np.set_printoptions(3)
cnts = np.bincount(mat.ravel())
pprint([[np.bincount(tm[mat==i])/cnts[i] for tm in (transformed_mat,transformed_mat_pp)] + [t_mat[i]] for i in range(4)])
from timeit import timeit
print('OP',timeit(lambda:categorical_transition(mat, t_mat),number=10)*100,'ms')
print('pp',timeit(lambda:pp(mat, t_mat),number=10)*100,'ms')
Пример выполнения:
[[array([0.186, 0.1 , 0.078, 0.637]),
array([0.186, 0.099, 0.078, 0.637]),
array([0.186, 0.099, 0.078, 0.637])],
[array([0.303, 0.517, 0.088, 0.092]),
array([0.303, 0.517, 0.089, 0.092]),
array([0.303, 0.517, 0.088, 0.092])],
[array([0.319, 0.27 , 0.329, 0.082]),
array([0.319, 0.271, 0.328, 0.083]),
array([0.318, 0.27 , 0.329, 0.082])],
[array([0.408, 0.106, 0.264, 0.222]),
array([0.409, 0.107, 0.263, 0.221]),
array([0.408, 0.107, 0.264, 0.221])]]
OP 872.7993675973266 ms
pp 170.54899749346077 ms