Pytorch CNN не научится, нужна помощь, чтобы выяснить, почему - PullRequest
7 голосов
/ 02 ноября 2019

Я делаю CNN с Pytorch для задачи, но она не будет учиться и улучшать точность. Я сделал версию, работающую с MNIST, чтобы я мог опубликовать ее здесь. Я просто ищу ответ о том, почему это не работает. Архитектура прекрасна, я реализовал ее в Керасе, и у меня была точность более 92% после 3 эпох. Примечание. Я преобразовал MNIST в изображения размером 60x60, потому что именно так изображения в моей «реальной» проблеме.

import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()


def resize(pics):
    pictures = []
    for image in pics:
        image = Image.fromarray(image).resize((dim, dim))
        image = np.array(image)
        pictures.append(image)
    return np.array(pictures)


dim = 60

x_train, x_test = resize(x_train), resize(x_test) # because my real problem is in 60x60

x_train = x_train.reshape(-1, 1, dim, dim).astype('float32') / 255
x_test = x_test.reshape(-1, 1, dim, dim).astype('float32') / 255
y_train, y_test = y_train.astype('float32'), y_test.astype('float32') 

if torch.cuda.is_available():
    x_train = torch.from_numpy(x_train)[:10_000]
    x_test = torch.from_numpy(x_test)[:4_000] 
    y_train = torch.from_numpy(y_train)[:10_000] 
    y_test = torch.from_numpy(y_test)[:4_000]


class ConvNet(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)

        self.fc1 = nn.Linear(5*5*128, 1024) 
        self.fc2 = nn.Linear(1024, 2048)
        self.fc3 = nn.Linear(2048, 1)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))

        x = x.view(x.size(0), -1) 
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.dropout(x, 0.5)
        x = torch.sigmoid(self.fc3(x))
        return x


net = ConvNet()

optimizer = optim.Adam(net.parameters(), lr=0.03)

loss_function = nn.BCELoss()


class FaceTrain:

    def __init__(self):
        self.len = x_train.shape[0]
        self.x_train = x_train
        self.y_train = y_train

    def __getitem__(self, index):
        return x_train[index], y_train[index].unsqueeze(0)

    def __len__(self):
        return self.len


class FaceTest:

    def __init__(self):
        self.len = x_test.shape[0]
        self.x_test = x_test
        self.y_test = y_test

    def __getitem__(self, index):
        return x_test[index], y_test[index].unsqueeze(0)

    def __len__(self):
        return self.len


train = FaceTrain()
test = FaceTest()

train_loader = DataLoader(dataset=train, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test, batch_size=64, shuffle=True)

epochs = 10
steps = 0
train_losses, test_losses = [], []
for e in range(epochs):
    running_loss = 0
    for images, labels in train_loader: 
        optimizer.zero_grad()
        log_ps = net(images)
        loss = loss_function(log_ps, labels)
        loss.backward()
        optimizer.step()        
        running_loss += loss.item()        
    else:
        test_loss = 0
        accuracy = 0        

        with torch.no_grad():
            for images, labels in test_loader: 
                log_ps = net(images)
                test_loss += loss_function(log_ps, labels)                
                ps = torch.exp(log_ps)
                top_p, top_class = ps.topk(1, dim=1)
                equals = top_class.type('torch.LongTensor') == labels.type(torch.LongTensor).view(*top_class.shape)
                accuracy += torch.mean(equals.type('torch.FloatTensor'))
        train_losses.append(running_loss/len(train_loader))
        test_losses.append(test_loss/len(test_loader))
        print("[Epoch: {}/{}] ".format(e+1, epochs),
              "[Training Loss: {:.3f}] ".format(running_loss/len(train_loader)),
              "[Test Loss: {:.3f}] ".format(test_loss/len(test_loader)),
              "[Test Accuracy: {:.3f}]".format(accuracy/len(test_loader)))

Ответы [ 2 ]

5 голосов
/ 02 ноября 2019

Первые основные проблемы ...

1. Основная проблема с этим кодом заключается в том, что вы используете неправильную форму вывода и неправильную функцию потерь для классификации.

nn.BCELoss вычисляет двоичное значение кросс-энтропийной потери. Это применимо, когда у вас есть одна или несколько целей, которые равны 0 или 1 (отсюда и двоичный код). В вашем случае целью является одно целое число от 0 до 9. Поскольку существует только небольшое количество потенциальных целевых значений, наиболее распространенным подходом является использование категориальной кросс-энтропийной потери (nn.CrossEntropyLoss). «Теоретическое» определение кросс-энтропийной потери предполагает, что выходные данные сети и цели будут представлять собой 10-мерные векторы, где целью являются все нули, за исключением одного местоположения (закодированного в горячем виде). Однако по соображениям вычислительной стабильности и эффективности использования пространства, Pytorch's nn.CrossEntropyLoss непосредственно принимает целое число в качестве цели . Однако , вам все равно нужно предоставить ему 10-мерный выходной вектор из вашей сети.

# pseudo code (ignoring batch dimension)
loss = nn.functional.cross_entropy_loss(<output 10d vector>, <integer target>)

Чтобы исправить эту проблему в вашем коде, нам нужно, чтобы fc3 вывел 10пространственный объект, и нам нужно, чтобы метки были целыми числами (а не числами с плавающей точкой). Кроме того, нет необходимости использовать .sigmoid на fc3, так как функция кросс-энтропийной потери pytorch внутренне применяет log-softmax перед вычислением окончательного значения потери.

2. Как указал SergetДымченко, вам нужно переключить сеть в режим eval во время вывода и в режим train во время поезда. Это в основном влияет на слои dropout и batch_norm, так как они ведут себя по-разному во время обучения и логического вывода.

3. Скорость обучения 0,03, вероятно, слишком высока. Он отлично работает со скоростью обучения 0,001, и в паре экспериментов я увидел, что тренировки расходятся в 0,03.


Чтобы учесть эти исправления, необходимо внести ряд изменений. Минимальные исправления к коду приведены ниже. Я прокомментировал все строки, которые были изменены с помощью #### с последующим кратким описанием изменения.

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()


def resize(pics):
    pictures = []
    for image in pics:
        image = Image.fromarray(image).resize((dim, dim))
        image = np.array(image)
        pictures.append(image)
    return np.array(pictures)


dim = 60

x_train, x_test = resize(x_train), resize(x_test) # because my real problem is in 60x60

x_train = x_train.reshape(-1, 1, dim, dim).astype('float32') / 255
x_test = x_test.reshape(-1, 1, dim, dim).astype('float32') / 255
#### float32 -> int64
y_train, y_test = y_train.astype('int64'), y_test.astype('int64')

#### no reason to test for cuda before converting to numpy

#### I assume you were taking a subset for debugging? No reason to not use all the data
x_train = torch.from_numpy(x_train)
x_test = torch.from_numpy(x_test)
y_train = torch.from_numpy(y_train)
y_test = torch.from_numpy(y_test)


class ConvNet(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)

        self.fc1 = nn.Linear(5*5*128, 1024)
        self.fc2 = nn.Linear(1024, 2048)
        #### 1 -> 10
        self.fc3 = nn.Linear(2048, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))

        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.dropout(x, 0.5)
        #### removed sigmoid
        x = self.fc3(x)
        return x


net = ConvNet()

#### 0.03 -> 1e-3
optimizer = optim.Adam(net.parameters(), lr=1e-3)

#### BCELoss -> CrossEntropyLoss
loss_function = nn.CrossEntropyLoss()


class FaceTrain:

    def __init__(self):
        self.len = x_train.shape[0]
        self.x_train = x_train
        self.y_train = y_train

    def __getitem__(self, index):
        #### .unsqueeze(0) removed
        return x_train[index], y_train[index]

    def __len__(self):
        return self.len


class FaceTest:

    def __init__(self):
        self.len = x_test.shape[0]
        self.x_test = x_test
        self.y_test = y_test

    def __getitem__(self, index):
        #### .unsqueeze(0) removed
        return x_test[index], y_test[index]

    def __len__(self):
        return self.len


train = FaceTrain()
test = FaceTest()

train_loader = DataLoader(dataset=train, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test, batch_size=64, shuffle=True)

epochs = 10
steps = 0
train_losses, test_losses = [], []
for e in range(epochs):
    running_loss = 0
    #### put net in train mode
    net.train()
    for idx, (images, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        log_ps = net(images)
        loss = loss_function(log_ps, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    else:
        test_loss = 0
        accuracy = 0

        #### put net in eval mode
        net.eval()
        with torch.no_grad():
            for images, labels in test_loader:
                log_ps = net(images)
                test_loss += loss_function(log_ps, labels)
                #### removed torch.exp() since exponential is monotone, taking it doesn't change the order of outputs. Similarly with torch.softmax()
                top_p, top_class = log_ps.topk(1, dim=1)
                #### convert to float/long using proper methods. what you have won't work for cuda tensors.
                equals = top_class.long() == labels.long().view(*top_class.shape)
                accuracy += torch.mean(equals.float())
        train_losses.append(running_loss/len(train_loader))
        test_losses.append(test_loss/len(test_loader))
        print("[Epoch: {}/{}] ".format(e+1, epochs),
              "[Training Loss: {:.3f}] ".format(running_loss/len(train_loader)),
              "[Test Loss: {:.3f}] ".format(test_loss/len(test_loader)),
              "[Test Accuracy: {:.3f}]".format(accuracy/len(test_loader)))

Результаты обучения теперь ...

[Epoch: 1/10]  [Training Loss: 0.139]  [Test Loss: 0.046]  [Test Accuracy: 0.986]
[Epoch: 2/10]  [Training Loss: 0.046]  [Test Loss: 0.042]  [Test Accuracy: 0.987]
[Epoch: 3/10]  [Training Loss: 0.031]  [Test Loss: 0.040]  [Test Accuracy: 0.988]
[Epoch: 4/10]  [Training Loss: 0.022]  [Test Loss: 0.029]  [Test Accuracy: 0.990]
[Epoch: 5/10]  [Training Loss: 0.017]  [Test Loss: 0.066]  [Test Accuracy: 0.987]
[Epoch: 6/10]  [Training Loss: 0.015]  [Test Loss: 0.056]  [Test Accuracy: 0.985]
[Epoch: 7/10]  [Training Loss: 0.018]  [Test Loss: 0.039]  [Test Accuracy: 0.991]
[Epoch: 8/10]  [Training Loss: 0.012]  [Test Loss: 0.057]  [Test Accuracy: 0.988]
[Epoch: 9/10]  [Training Loss: 0.012]  [Test Loss: 0.041]  [Test Accuracy: 0.991]
[Epoch: 10/10]  [Training Loss: 0.007]  [Test Loss: 0.048]  [Test Accuracy: 0.992]

Некоторыедругие проблемы, которые улучшат вашу производительность и код.

4. Вы никогда не перемещаете модель в графический процессор. Это означает, что вы не получите ускорение графического процессора.

5. torchvision разработан со всеми стандартными преобразованиями и наборами данных и создан для использования с PyTorch. Я рекомендую использовать это. Это также устраняет зависимость от keras в вашем коде.

6. Нормализуйте свои данные, вычтя среднее значение и разделив на стандартное отклонение, чтобы улучшить производительность вашей сети. С torchvision вы можете использовать transforms.Normalize. Это не будет иметь большого значения в MNIST, потому что это уже слишком просто. Но в более сложных задачах это оказывается важным.


Далее улучшенный код показан ниже (намного быстрее на GPU).

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms

dim = 60

class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)

        self.fc1 = nn.Linear(5 * 5 * 128, 1024)
        self.fc2 = nn.Linear(1024, 2048)
        self.fc3 = nn.Linear(2048, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))

        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.dropout(x, 0.5)
        x = self.fc3(x)
        return x


net = ConvNet()
if torch.cuda.is_available():
    net.cuda()

optimizer = optim.Adam(net.parameters(), lr=1e-3)

loss_function = nn.CrossEntropyLoss()

train_dataset = MNIST('./data', train=True, download=True,
                      transform=transforms.Compose([
                          transforms.Resize((dim, dim)),
                          transforms.ToTensor(),
                          transforms.Normalize((0.1307,), (0.3081,))
                      ]))
test_dataset = MNIST('./data', train=False, download=True,
                     transform=transforms.Compose([
                         transforms.Resize((dim, dim)),
                         transforms.ToTensor(),
                         transforms.Normalize((0.1307,), (0.3081,))
                     ]))

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True, num_workers=8)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False, num_workers=8)

epochs = 10
steps = 0
train_losses, test_losses = [], []
for e in range(epochs):
    running_loss = 0
    net.train()
    for images, labels in train_loader:
        if torch.cuda.is_available():
            images, labels = images.cuda(), labels.cuda()
        optimizer.zero_grad()
        log_ps = net(images)
        loss = loss_function(log_ps, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    else:
        test_loss = 0
        accuracy = 0

        net.eval()
        with torch.no_grad():
            for images, labels in test_loader:
                if torch.cuda.is_available():
                    images, labels = images.cuda(), labels.cuda()
                log_ps = net(images)
                test_loss += loss_function(log_ps, labels)
                top_p, top_class = log_ps.topk(1, dim=1)
                equals = top_class.flatten().long() == labels
                accuracy += torch.mean(equals.float()).item()
        train_losses.append(running_loss/len(train_loader))
        test_losses.append(test_loss/len(test_loader))
        print("[Epoch: {}/{}] ".format(e+1, epochs),
              "[Training Loss: {:.3f}] ".format(running_loss/len(train_loader)),
              "[Test Loss: {:.3f}] ".format(test_loss/len(test_loader)),
              "[Test Accuracy: {:.3f}]".format(accuracy/len(test_loader)))

Обновлены результаты обучения ...

[Epoch: 1/10]  [Training Loss: 0.125]  [Test Loss: 0.045]  [Test Accuracy: 0.987]
[Epoch: 2/10]  [Training Loss: 0.043]  [Test Loss: 0.031]  [Test Accuracy: 0.991]
[Epoch: 3/10]  [Training Loss: 0.030]  [Test Loss: 0.030]  [Test Accuracy: 0.991]
[Epoch: 4/10]  [Training Loss: 0.024]  [Test Loss: 0.046]  [Test Accuracy: 0.990]
[Epoch: 5/10]  [Training Loss: 0.020]  [Test Loss: 0.032]  [Test Accuracy: 0.992]
[Epoch: 6/10]  [Training Loss: 0.017]  [Test Loss: 0.046]  [Test Accuracy: 0.991]
[Epoch: 7/10]  [Training Loss: 0.015]  [Test Loss: 0.034]  [Test Accuracy: 0.992]
[Epoch: 8/10]  [Training Loss: 0.011]  [Test Loss: 0.048]  [Test Accuracy: 0.992]
[Epoch: 9/10]  [Training Loss: 0.012]  [Test Loss: 0.037]  [Test Accuracy: 0.991]
[Epoch: 10/10]  [Training Loss: 0.013]  [Test Loss: 0.038]  [Test Accuracy: 0.992]
4 голосов
/ 02 ноября 2019

В одном я заметил, что вы тестируете модель в режиме поезда. Вам нужно позвонить net.eval(), чтобы отключить отсев (а затем net.train() снова, чтобы вернуть его в режим поезда).

Возможно, есть другие проблемы. Потеря обучения снижается? Вы пытались одеть один пример?

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...