Я пытаюсь использовать какой-нибудь рубиновый код, который я нашел в Github. Я скачал код и выполнил необходимые операции импорта «require» и попытался запустить его, как описано в файле readme в репозитории github. Код следующий:
В файле pcset_test.rb
код следующий:
require './pcset.rb'
require 'test/unit'
#
# When possible, test cases are adapted from
# Introduction to Post-Tonal Theory by Joseph N. Straus,
# unless obvious or otherwise noted.
#
class PCSetTest < Test::Unit::TestCase
def test_init
#assert_raise(ArgumentError) {PCSet.new []}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3, 'string']}
assert_raise(ArgumentError) {PCSet.new "string"}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3.6, 4]}
assert_equal([0, 1, 2, 9], PCSet.new([0, 1, 2, 33, 13]).pitches)
assert_equal([3, 2, 1, 11, 10, 0], PCSet.new_from_string('321bac').pitches)
assert_equal([0,2,4,5,7,11,9], PCSet.new([12,2,4,5,7,11,9]).pitches)
assert_nothing_raised() {PCSet.new []}
end
def test_inversion
end
def test_transposition
end
def test_multiplication
end
#
# set normal prime forte #
# 0,2,4,7,8,11 7,8,11,0,2,4 0,1,4,5,7,9 6-31
# 0,1,2,4,5,7,11 11,0,1,2,4,5,7 0,1,2,3,5,6,8 7-Z36
# 0,1,3,5,6,7,9,10,11 5,6,7,9,10,11,0,1,3 0,1,2,3,4,6,7,8,10 9-8
#
def test_normal_form
testPC = PCSet.new [0,4,8,9,11]
assert_kind_of(PCSet, testPC.normal_form)
assert_equal([8,9,11,0,4], testPC.normal_form.pitches)
assert_equal([10,1,4,6], PCSet.new([1,6,4,10]).normal_form.pitches)
assert_equal([2,4,8,10], PCSet.new([10,8,4,2]).normal_form.pitches)
assert_equal([7,8,11,0,2,4], PCSet.new([0,2,4,7,8,11]).normal_form.pitches)
assert_equal([11,0,1,2,4,5,7], PCSet.new([0,1,2,4,5,7,11]).normal_form.pitches)
assert_equal([5,6,7,9,10,11,0,1,3], PCSet.new([0,1,3,5,6,7,9,10,11]).normal_form.pitches)
end
def test_prime_form
assert_equal([0,1,2,6], PCSet.new([5,6,1,7]).prime.pitches)
assert_equal([0,1,4], PCSet.new([2,5,6]).prime.pitches)
assert_equal([0,1,4,5,7,9], PCSet.new([0,2,4,7,8,11]).prime.pitches)
assert_equal([0,1,2,3,5,6,8], PCSet.new([0,1,2,4,5,7,11]).prime.pitches)
assert_equal([0,1,2,3,4,6,7,8,10], PCSet.new([0,1,3,5,6,7,9,10,11]).prime.pitches)
end
def test_set_class
testPcs = PCSet.new([2,5,6])
testPrime = testPcs.prime
assert_equal([
[2,5,6], [3,6,7], [4,7,8], [5,8,9], [6,9,10], [7,10,11],
[8,11,0],[9,0,1], [10,1,2],[11,2,3],[0,3,4], [1,4,5],
[6,7,10],[7,8,11],[8,9,0], [9,10,1],[10,11,2],[11,0,3],
[0,1,4], [1,2,5], [2,3,6], [3,4,7], [4,5,8], [5,6,9]
].sort, PCSet.new([2,5,6]).set_class.map{|x| x.pitches})
assert_equal(testPcs.set_class.map{|x| x.pitches}, testPrime.set_class.map{|x| x.pitches})
end
def test_interval_vector
assert_equal([2,1,2,1,0,0], PCSet.new([0,1,3,4]).interval_vector)
assert_equal([2,5,4,3,6,1], PCSet.new([0,1,3,5,6,8,10]).interval_vector)
assert_equal([0,6,0,6,0,3], PCSet.new([0,2,4,6,8,10]).interval_vector)
end
def test_complement
assert_equal([6,7,8,9,10,11], PCSet.new([0,1,2,3,4,5]).complement.pitches)
assert_equal([3,4,5], PCSet.new([0,1,2], 6).complement.pitches)
end
#
# Test values from (Morris 1991), pages 105-111
# Citation:
# Morris. Class Notes for Atonal Music Theory
# Lebanon, NH. Frog Peak Music, 1991.
#
def test_invariance_vector
assert_equal([1,0,0,0,5,6,5,5],PCSet.new([0,2,5]).invariance_vector)
assert_equal([2,2,2,2,6,6,6,6],PCSet.new([0,1,6,7]).invariance_vector)
assert_equal([6,6,6,6,6,6,6,6],PCSet.new([0,2,4,6,8,10]).invariance_vector)
assert_equal([1,0,0,0,0,0,0,0],PCSet.new([0,1,2,3,4,5,8]).invariance_vector)
assert_equal([1,0,0,1,0,0,0,0],PCSet.new([0,1,2,3,5,6,8]).invariance_vector)
assert_equal([12,12,12,12,0,0,0,0],PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).invariance_vector)
end
#
# Test values from (Huron 1994). Huron rounds, thus the 0.01 margin of error.
# Citation:
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
#
def test_huron
h1 = PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).huron
assert_in_delta(-0.2, h1[0], 0.01)
assert_in_delta(0.21, h1[1], 0.01)
h2 = PCSet.new([0,2,4,5,7,9,11]).huron
assert_in_delta(4.76, h2[0], 0.01)
assert_in_delta(0.62, h2[1], 0.01)
end
def test_coherence
end
end
И в файле pcset.rb
следующий код:
#
# => PCSet Class for Ruby
# => Beau Sievers
# => Hanover, Fall 2008.
#
#
# TODO: Make this a module to avoid namespace collisions.
# Lilypond and MusicXML output
#
include Math
def choose(n, k)
return [[]] if n.nil? || n.empty? && k == 0
return [] if n.nil? || n.empty? && k > 0
return [[]] if n.size > 0 && k == 0
c2 = n.clone
c2.pop
new_element = n.clone.pop
choose(c2, k) + append_all(choose(c2, k-1), new_element)
end
def append_all(lists, element)
lists.map { |l| l << element }
end
def array_to_binary(array)
array.inject(0) {|sum, n| sum + 2**n}
end
# the following method is horrifically inelegant
# but avoids monkey-patching.
# TODO: do this right, incl. error checking
def pearsons(x, y)
if !x.is_a?(Array) || !y.is_a?(Array) then raise StandardError, "x and y must be arrays", caller end
if x.size != y.size then raise StandardError, "x and y must be same size", caller end
sum_x = x.inject(0) {|sum, n| sum + n}
sum_y = y.inject(0) {|sum, n| sum + n}
sum_square_x = x.inject(0) {|sum, n| sum + n * n}
sum_square_y = y.inject(0) {|sum, n| sum + n * n}
xy = []
x.zip(y) {|a, b| xy.push(a * b)}
sum_xy = xy.inject(0) {|sum, n| sum + n}
num = sum_xy - ((sum_x * sum_y)/x.size)
den = Math.sqrt((sum_square_x - ((sum_x*sum_x)/x.size)) * (sum_square_y - ((sum_y*sum_y)/x.size)))
(num/den)
end
class PCSet
include Comparable
attr_reader :pitches, :base, :input
def initialize(pcarray, base = 12)
if pcarray.instance_of?(Array) && pcarray.all?{|pc| pc.instance_of?(Fixnum)}
@base, @input = base, pcarray
@pitches = pcarray.map{ |x| x % @base }.uniq
else
raise ArgumentError, "Improperly formatted PC array", caller
end
end
def PCSet.new_from_string(pcstring, base = 12)
if base > 36 then raise StandardError, "Use PCSet.new to create pcsets with a base larger than 36", caller end
pcarray = []
pcstring.downcase.split(//).each do |c|
if c <= 'z' and c >= '0' then pcarray.push(c.to_i(36)) end
end
PCSet.new pcarray, base
end
def <=>(pcs)
@pitches <=> pcs.pitches
end
def [](index)
@pitches[index]
end
# Intersection
def &(other)
PCSet.new @pitches & other.pitches
end
# Union
def |(other)
PCSet.new @pitches | other.pitches
end
def inspect
@pitches.inspect
end
def length
@pitches.length
end
def invert(axis = 0)
PCSet.new @pitches.map {|x| (axis-x) % @base}
end
def invert!(axis = 0)
@pitches.map! {|x| (axis-x) % @base}
end
def transpose(interval)
PCSet.new @pitches.map {|x| (x + interval) % @base}
end
def transpose!(interval)
@pitches.map! {|x| (x + interval) % @base}
end
def multiply(m = 5)
PCSet.new @pitches.map {|x| (x * m) % @base}
end
def multiply!(m = 5)
@pitches.map! {|x| (x * m) % @base}
end
def zero
transpose(-1 * @pitches[0])
end
def zero!
transpose!(-1 * @pitches[0])
end
def transpositions
(0..(@base-1)).to_a.map{|x| @pitches.map {|y| (y + x) % @base}}.sort.map {|x| PCSet.new x}
end
def transpositions_and_inversions(axis = 0)
transpositions + invert(axis).transpositions
end
#
# Normal form after Straus. Morris and AthenaCL do this differently.
#
def normal_form
tempar = @pitches.sort
arar = [] # [[1,4,7,8,10],[4,7,8,10,1], etc.] get each cyclic variation
tempar.each {arar.push PCSet.new(tempar.unshift(tempar.pop))}
most_left_compact(arar)
end
def normal_form!
@pitches = normal_form.pitches
end
def is_normal_form?
self.pitches == self.normal_form.pitches
end
def set_class
transpositions_and_inversions.map{|pcs| pcs.normal_form}.sort
end
def prime
most_left_compact([normal_form.zero, invert.normal_form.zero])
end
def prime!
self.pitches = self.prime.pitches
end
def is_prime?
self.pitches == self.prime.pitches
end
def complement
new_pitches = []
@base.times do |p|
if !@pitches.include? p then
new_pitches.push p
end
end
PCSet.new new_pitches
end
def full_interval_vector
pairs = choose(@pitches, 2) # choose every pc pair
intervals = pairs.map {|x| (x[1] - x[0]) % @base} # calculate every interval
i_vector = Array.new(@base-1).fill(0)
intervals.each {|x| i_vector[x-1] += 1} # count the intervals
i_vector
end
def interval_vector
i_vector = full_interval_vector
(0..((@base-1)/2)-1).each {|x| i_vector[x] += i_vector.pop}
i_vector
end
#
# Morris's invariance vector
#
def invariance_vector(m = 5)
t = transpositions.map!{|pcs| self & pcs}
ti = invert.transpositions.map!{|pcs| self & pcs}
tm = multiply(m).transpositions.map!{|pcs| self & pcs}
tmi = invert.multiply(m).transpositions.map!{|pcs| self & pcs}
tc = complement.transpositions.map!{|pcs| self & pcs}
tic = complement.invert.transpositions.map!{|pcs| self & pcs}
tmc = complement.multiply(m).transpositions.map!{|pcs| self & pcs}
tmic = complement.invert.multiply(m).transpositions.map!{|pcs| self & pcs}
[t, ti, tm, tmi, tc, tic, tmc, tmic].map{|x| x.reject{|pcs| pcs.pitches != @pitches}.length}
end
# Huron's aggregate dyadic consonance measure.
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
def huron
if @base != 12 then raise StandardError, "PCSet.huron only makes sense for mod 12 pcsets", caller end
# m2/M7 M2/m7 m3/M6 M3/m6 P4/P5 A4/d5
huron_table = [-1.428, -0.582, 0.594, 0.386, 1.240, -0.453]
interval_consonance = []
interval_vector.zip(huron_table) {|x, y| interval_consonance.push(x * y) }
aggregate_dyadic_consonance = interval_consonance.inject {|sum, n| sum + n}
[aggregate_dyadic_consonance, pearsons(interval_vector, huron_table)]
end
#
# Balzano's vector of relations. Citation for all Balzano methods:
#
# Balzano. "The Pitch Set as a Level of Description for Studying Musical
# Pitch Perception" in Music, Mind, and Brain ed. Clynes. Plenum Press. 1982.
#
def vector_of_relations
(0..length-1).to_a.map do |i|
(0..length-1).to_a.map do |j|
(@pitches[(i + j) % length] - @pitches[i]) % @base
end
end
end
#
# Checks if the set satisfies Balzano's uniqueness.
#
def is_unique?
vector_of_relations.uniq.size == vector_of_relations.size
end
#
# Checks if the set satisfies Balzano's scalestep-semitone coherence.
# For all s[i] and s[i1]:
# j < k => v[i][j] < v[i1][k]
# Where j and k are scalestep-counting indices.
# And unless v[i][j] == 6 (a tritone), in which case the strict inequality is relaxed.
#
def is_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
if v[i][j] == 6
truth_array.push(v[i][j] <= v[i1][k])
else
truth_array.push(v[i][j] < v[i1][k])
end
if v[i1][j] == 6
truth_array.push(v[i1][j] <= v[i][k])
else
truth_array.push(v[i1][j] < v[i][k])
end
end
end
!truth_array.include?(false)
end
#
# Strict Balzano coherence, no inequality relaxation for tritones.
#
def is_strictly_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
truth_array.push(v[i][j] < v[i1][k])
truth_array.push(v[i1][j] < v[i][k])
end
end
!truth_array.include?(false)
end
def notes(middle_c = 0)
noteArray = ['C','C#','D','D#','E','F','F#','G','G#','A','A#','B']
if @base != 12 then raise StandardError, "PCSet.notes only makes sense for mod 12 pcsets", caller end
out_string = String.new
transpose(-middle_c).pitches.each do |p|
out_string += noteArray[p] + ", "
end
out_string.chop.chop
end
def info
print "modulo: #{@base}\n"
print "raw input: #{@input.inspect}\n"
print "pitch set: #{@pitches.inspect}\n"
print "notes: #{notes}\n"
print "normal: #{normal_form.inspect}\n"
print "prime: #{prime.inspect}\n"
print "interval vector: #{interval_vector.inspect}\n"
print "invariance vector: #{invariance_vector.inspect}\n"
print "huron ADC: #{huron[0]} pearsons: #{huron[1]}\n"
print "balzano coherence: "
if is_strictly_coherent?
print "strictly coherent\n"
elsif is_coherent?
print "coherent\n"
else
print "false\n"
end
end
# def lilypond
#
# end
#
# def musicXML
#
# end
###############################################################################
private
#
# Convert every pitch array to a binary representation, e.g.:
# [0,2,4,8,10] -> 010100010101
# 2^n: BA9876543210
# The smallest binary number is the most left-compact.
#
def most_left_compact(pcset_array)
if !pcset_array.all? {|pcs| pcs.length == pcset_array[0].length}
raise ArgumentError, "PCSet.most_left_compact: All PCSets must be of same cardinality", caller
end
zeroed_pitch_arrays = pcset_array.map {|pcs| pcs.zero.pitches}
binaries = zeroed_pitch_arrays.map {|array| array_to_binary(array)}
winners = []
binaries.each_with_index do |num, i|
if num == binaries.min then winners.push(pcset_array[i]) end
end
winners.sort[0]
end
end
Я звоню им следующим образом:
> my_pcset = PCSet.new([0,2,4,6,8,10])
> my_pcset2 = PCSet.new([1,5,9])
Это должно вернуть:
> my_pcset = PCSet.new([0,2,4,6,8,10])
=> [0, 2, 4, 6, 8, 10]
> my_pcset2 = PCSet.new([1,5,9])
=> [1, 5, 9]
Но ничего не возвращается. Код доступен на github Спасибо