У меня есть два кадра данных
результаты:
0 2211 E Winston Rd Ste B, 92806, CA 33.814547 -117.886028 4
1 P.O. Box 5601, 29304, SC 34.945855 -81.930035 6
2 4113 Darius Dr, 17025, PA 40.287768 -76.967292 8
acctypeDF:
0 rooftop
1 place
2 rooftop
Я хотел объединить оба этих кадра данных, поэтому я сделал:
import pandas as pd
resultsfinal = pd.concat([results, acctypeDF], axis=1)
Но вывод:
resultsfinal
Out[155]:
0 1 2 3 0
0 2211 E Winston Rd Ste B, 92806, CA 33.814547 -117.886028 4 rooftop
1 P.O. Box 5601, 29304, SC 34.945855 -81.930035 6 place
2 4113 Darius Dr, 17025, PA 40.287768 -76.967292 8 rooftop
Как видите, выход повторяет номер индекса 0. Почему это происходит? Моя цель - удалить первый индекс (первый столбец), в котором есть адреса, но я получаю эту ошибку:
resultsfinal.drop(columns='0')
raise KeyError('{} not found in axis'.format(labels))
KeyError: "['0'] not found in axis"
Я также попытался:
resultsfinal = pd.concat([results, acctypeDF], axis=1,ignore_index=True)
resultsfinal
Out[158]:
0 1 ... 4 5
0 2211 E Winston Rd Ste B, 92806, CA 33.814547 ... rooftop rooftop
1 P.O. Box 5601, 29304, SC 34.945855 ... place place
Но, как вы видите выше, хотя проблема повторения индекса 0 исчезает, создается двойной столбец (5)
Если я сделаю:
resultsfinal = results[results.columns[1:]]
resultsfinal
Out[161]:
1 2 ... 0 0
0 33.814547 -117.886028 ... 2211 E Winston Rd Ste B, 92806, CA rooftop
1 34.945855 -81.930035 ... P.O. Box 5601, 29304, SC place
print(resultsfinal.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 5 columns):
0 10 non-null object
1 10 non-null float64
2 10 non-null float64
3 10 non-null int64
4 10 non-null object
dtypes: float64(2), int64(1), object(2)
memory usage: 480.0+ bytes