Я строю CNN и обучаю его классификации жестов жестов для букв от A до I (9 классов), каждое изображение имеет формат RGB с размером 224x224.
Не уверен, какую матрицу мне нужно транспонировать, икак. Мне удалось сопоставить входы и выходы слоев, но это умножение матриц, не совсем уверен, как это исправить.
class LargeNet(nn.Module):
def __init__(self):
super(LargeNet, self).__init__()
self.name = "large"
self.conv1 = nn.Conv2d(3, 5, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(5, 10, 5)
self.fc1 = nn.Linear(10 * 53 * 53, 32)
self.fc2 = nn.Linear(32, 9)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
print('x1')
x = self.pool(F.relu(self.conv2(x)))
print('x2')
x = x.view(-1, 10*53*53)
print('x3')
x = F.relu(self.fc1(x))
print('x4')
x = x.view(-1, 1)
x = self.fc2(x)
print('x5')
x = x.squeeze(1) # Flatten to [batch_size]
return x
и обучающий код
#Loss and optimizer
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.SGD(model2.parameters(), lr=learning_rate, momentum=0.9)
# Train the model
total_step = len(train_loader)
loss_list = []
acc_list = []
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
print(i,images.size(),labels.size())
# Run the forward pass
outputs = model2(images)
labels=labels.unsqueeze(1)
labels=labels.float()
loss = criterion(outputs, labels)
Код печатаетдо x4, а затем я получаю эту ошибку RuntimeError: несоответствие размера, m1: [32 x 1], m2: [32 x 9] в C: \ w \ 1 \ s \ tmp_conda_3.7_055457 \ conda \ conda-bld \ pytorch_1565416617654\ work \ aten \ src \ TH / generic / THTensorMath.cpp: 752
Полная ошибка трассировки: https://ibb.co/ykqy5wM