Не ясно, что вы пытаетесь сбросить. Если вы используете axis=1
, то вы пытаетесь удалить столбец ... в этом случае похоже, что ваш код работает нормально (я не вижу столбца Code
в выходных данных DataFrame. )
Если вы пытаетесь отбросить строк на основе значения Entity
, вам нужно использовать индекс df.loc, как в ...
`df.drop(df.loc[df['columnsname']=="Entity"].index, inplace=True)`
или
`df.drop(df.loc[df['Entity']=="<some value>"].index, inplace=True)`
Посмотрите на это в качестве примера ...
from dataframefromstring import DataFrameFromString
df = DataFrameFromString() # Just loads a df for this example. Nothing to do with your code
# show the starting dataframe
print("=== Original DF ==============")
print(df)
# Drop the column "Name"
df.drop('Name', axis=1, inplace=True)
print("=== Dropped column ==============")
print(df)
# Drop multiple columns
df.drop(['Ticket_No', "Fare"], axis=1, inplace=True)
print("=== Dropped mutiple columns ==============")
print(df)
# Drop rows based on column X having some value
df.drop(df.loc[df['Sex']=="male"].index, inplace=True)
print("=== Drop row where Column = <something> ==============")
print(df)
# Drop rows based on multiple values value
df.drop(df.loc[ (df['Sex'].isnull() ) | (df["Age"] < 42 ) ].index, inplace=True)
print("=== Drop rows based on multiple conditions ==============")
print(df)
ВЫХОД:
=== Original DF ==============
Name Sex Age Ticket_No Fare
0 Braund male 22.0 HN07681 2500.0
1 NaN female 42.0 HN05681 6895.0
2 peter male NaN KKSN55 800.0
3 NaN male 56.0 HN07681 2500.0
4 Daisy female 22.0 hf55s44 NaN
5 Manson NaN 48.0 HN07681 8564.0
6 Piston male NaN HN07681 5622.0
7 Racline female 42.0 Nh55146 NaN
8 NaN male 22.0 HN07681 4875.0
9 NaN NaN NaN NaN NaN
=== Dropped column ==============
Sex Age Ticket_No Fare
0 male 22.0 HN07681 2500.0
1 female 42.0 HN05681 6895.0
2 male NaN KKSN55 800.0
3 male 56.0 HN07681 2500.0
4 female 22.0 hf55s44 NaN
5 NaN 48.0 HN07681 8564.0
6 male NaN HN07681 5622.0
7 female 42.0 Nh55146 NaN
8 male 22.0 HN07681 4875.0
9 NaN NaN NaN NaN
=== Dropped mutiple columns ==============
Sex Age
0 male 22.0
1 female 42.0
2 male NaN
3 male 56.0
4 female 22.0
5 NaN 48.0
6 male NaN
7 female 42.0
8 male 22.0
9 NaN NaN
=== Drop row where Column = <something> ==============
Sex Age
1 female 42.0
4 female 22.0
5 NaN 48.0
7 female 42.0
9 NaN NaN
=== Drop rows based on multiple conditions ==============
Sex Age
1 female 42.0
7 female 42.0