Выпуск с тидыром разложить и собрать в блестящий - PullRequest
0 голосов
/ 07 октября 2019

Я пытаюсь использовать spread и gather, используя tidyr версию 1.0.0.9000 и dplyr версию 0.8.3.9000. Теперь этот кусок кода работает нормально, когда я делаю это автономный скрипт. Но как только я использую это в блестящем приложении. Я получаю следующую ошибку: Warning: Error in : Each row of output must be identified by a unique combination of keys. Keys are shared for 192 rows:

Ниже приведен код, который имеет проблему. Извиняюсь за длинный код, так как большая часть его - это просто данные.

d1 <- tibble::tribble(
      ~Date, ~apple_count, ~apple_sale, ~banana_count, ~banana_sale, ~orange_count, ~orange_sale, ~peaches_count, ~peaches_sale, ~watermelon_count, ~watermelon_sale, ~strawberry_count, ~strawberry_sale,
  "8/19/19",  10882.05495,      239575,             0,            0,             0,            0,              0,             0,       9643.600102,           630827,                 0,                0,
  "8/20/19",    516.29755,       11281,             0,            0,             0,            0,              0,             0,       6041.538067,           510219,           1694.44,           684210,
  "8/21/19",     949.4084,       20150,             0,            0,             0,            0,              0,             0,       5371.758106,           565440,           9105.89,          3695182,
  "8/22/19",    3950.5318,       88679,             0,            0,             0,            0,              0,             0,       5238.308826,           576678,           6179.47,          2501560,
  "8/23/19",   2034.02055,       45672,             0,            0,             0,            0,              0,             0,        4994.43054,           518081,           7366.31,          2984563,
  "8/24/19",   1770.50415,       38553,             0,            0,             0,            0,              0,             0,       5001.303585,           551733,           6275.43,          2531400,
  "8/25/19",    3418.3042,       75686,             0,            0,             0,            0,              0,             0,       5005.408468,           552739,           6454.84,          2590925,
  "8/26/19",   4044.93545,       90665,             0,            0,             0,            0,              0,             0,       5713.820592,           598826,           5062.37,          2025959,
  "8/27/19",  1246.438172,      353899,             0,            0,             0,            0,              0,             0,       5679.438096,           580955,           3696.86,          1478264,
  "8/28/19",   4657.00945,      136864,             0,            0,             0,            0,              0,             0,       5626.486464,           571672,           4153.98,          1676628,
  "8/29/19",   4117.79875,      148569,             0,            4,             0,            0,              0,             0,       5562.927825,           571978,           5576.16,          2263248,
  "8/30/19",  12408.52652,      610845,             0,            3,             0,            0,              0,             0,       5358.758567,           534372,           4529.15,          1841084,
  "8/31/19",     3.812501,       79770,             0,            0,             0,            0,              0,             0,       1318.608575,           143211,            5630.9,          2285788,
   "9/1/19",   3259.95555,       52096,             0,           31,             0,            0,              0,             0,          0.403265,               73,           7314.46,          2967691,
   "9/2/19",   3118.19395,       49821,        0.2618,           84,             0,            0,              0,             0,       9001.834063,          1092501,           7561.02,          3063684,
   "9/3/19",   2577.94215,       41201,        0.0748,          184,             0,            0,              0,             0,       5008.337284,           585832,           5784.59,          2325519,
   "9/4/19",     2551.092,       40741,      669.5569,        37265,             0,            0,              0,             0,       14384.24161,          1361752,            479.09,           192116,
   "9/5/19",   1910.63475,       30516,       418.931,        34028,             0,            0,              0,             0,       9740.894144,          1025175,           4657.47,          1871629,
   "9/6/19",    1729.9115,       27635,      933.5992,        35408,             0,            0,              0,             0,       11535.33576,          1216191,           5423.41,          2189965,
   "9/7/19",    1933.2576,       30881,    1625.94205,        52404,             0,            0,              0,             0,       11607.06273,          1274550,           5769.07,          2334982,
   "9/8/19",    2354.9107,       37609,     1358.5788,        45251,             0,            0,              0,             0,       11447.76754,          1319610,           6345.95,          2574350,
   "9/9/19",   2156.24705,       34440,    1632.42415,        52673,             0,            0,    1141.633875,         60219,       12100.08157,          1332270,           6266.89,          2531336,
  "9/10/19",   2195.91555,       35076,     1816.6642,        58719,             0,            0,     2292.24701,        193714,       12264.68769,          1552984,           8804.48,          3555329,
  "9/11/19",   1767.93085,       28243,     1856.1076,        60066,             0,            2,    3862.565979,        464879,       12104.56425,          1457483,           5765.86,          2314422,
  "9/12/19",   16909.7263,      270128,    2028.57855,        65737,             0,            0,    4031.945994,        492095,       11907.39192,          1389034,           6899.48,          2778142,
  "9/13/19",   1635.86595,       26140,    2286.31045,        74663,             0,            0,    4069.372958,        488815,        11413.9593,          1391875,           4538.55,          1828332,
  "9/14/19",     1632.651,       26086,     2337.1056,        75633,             0,            0,    3807.516972,        452589,       11438.13724,          1504945,           4435.36,          1796896,
  "9/15/19",    1764.6102,       28197,    2151.96115,        71064,         0.065,            9,    4319.488905,        518074,       11405.91464,          1528981,           5016.74,          2034118,
  "9/16/19",  13433.71685,      214153,     2163.0511,        71649,       534.793,        74982,    4230.152044,        495831,       18893.07808,          2343183,           5492.47,          2225169,
  "9/17/19",    1511.6027,       39954,     2704.8836,        89056,      2505.192,       165836,    3864.815982,        450443,       13621.20195,          1954270,           5883.12,          2385314,
  "9/18/19",     1441.447,       90164,    2462.17205,        80965,      2866.423,       218112,    3962.909972,        477259,       13418.99777,          1995541,           5632.52,          2279495,
  "9/19/19",   1767.94215,       72662,    2465.20825,        81634,      1169.787,       117449,    3676.161075,        455261,       13179.62418,          1891898,           5351.19,          2163109
  )



d2 <- d1 %>%
  tidyr::gather(column, value, -Date) %>%
  tidyr::separate(column, into=c('partner', 'parameter'), sep='_') %>%
  tidyr::spread(parameter, value)%>% dplyr::group_by(partner) %>%
  dplyr::mutate(grouped_id = row_number()) %>% 
  dplyr::summarise( Total_Count = sum(as.numeric(count)),
                    Total_Sale = sum(as.numeric(sale))) 


Ожидаемый результат будет примерно таким, как показано ниже:

partner    Total_Count Total_Sale
  <chr>            <dbl>      <dbl>
1 apple          115653.    3115951
2 banana          28911.     986521
3 orange           7076.     576390
4 peaches         39259.    4549179
5 strawberry     173148.   69970409
6 watermelon     285030.   33124879

Ответы [ 2 ]

2 голосов
/ 07 октября 2019

Если мы используем pivot_longer и pivot_wider из tidyr_1.0.0, проблема не будет

library(dplyr)
library(tidyr) #1.0.0
d1 %>%
   pivot_longer(cols = -Date) %>%
   separate(name, into=c('partner', 'parameter'), sep='_') %>% 
   pivot_wider(names_from = parameter, values_from = value) %>%
   group_by(partner) %>%
   summarise_at(vars(count, sale), list(Total = sum))
# A tibble: 6 x 3
#  partner    count_Total sale_Total
#  <chr>            <dbl>      <dbl>
#1 apple          115653.    3115951
#2 banana          28911.     986521
#3 orange           7076.     576390
#4 peaches         39259.    4549179
#5 strawberry     173148.   69970409
#6 watermelon     285030.   33124879
1 голос
/ 07 октября 2019
library(dplyr)
library(tidyr) #1.0.0
d1 %>% 
   #separate column names based on _
   #use the special verb .value to preserve the columns count and sales and their values
   pivot_longer(-Date, names_to = c("partner",".value"), names_pattern = "(.*)_(.*)") %>% 
   group_by(partner) %>% 
   summarise_at(vars(count,sale), list(Total=sum))

# A tibble: 6 x 3
  partner    count_Total sale_Total
  <chr>            <dbl>      <dbl>
1 apple          115653.    3115951
2 banana          28911.     986521
3 orange           7076.     576390
4 peaches         39259.    4549179
5 strawberry     173148.   69970409
6 watermelon     285030.   33124879
...