Я пытаюсь развернуть мой флеш-чат на сервере Wamp с помощью mod_wsgi. Я могу запустить простое приложение фляги на Wamp. Но когда я пытаюсь запустить мой чат-бот с флягой AI, который использует пакеты Python, такие как tenorflow, numpy, tflearn и т. Д., Wamp не загрузит его. Я тестировал приложение фляги локально без каких-либо проблем. Но это не работает на Apache Wamp. Также он не может загрузить файл JSON.
Вот код колбы Chatbot
from flask import Flask, render_template, request
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import random
import tensorflow
import tflearn
import pickle
import json
app = Flask(__name__)
with open('intents.json') as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/get")
def chat():
userText = request.args.get('msg')
while True:
results = model.predict([bag_of_words(userText, words)])[0]
results_index = numpy.argmax(results)
tag = labels[results_index]
if results[results_index] > 0.7:
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
responce= random.choice(responses)
return responce
else:
return("i didn't understand. try something else. ")
if __name__ == "__main__":
app.run()
И вот как я настроил apache
LoadFile "c:/users/juliana thayil/appdata/local/programs/python/python36/python36.dll"
LoadModule wsgi_module "c:/users/juliana thayil/appdata/local/programs/python/python36/lib/site-packages/mod_wsgi/server/mod_wsgi.cp36-win_amd64.pyd"
WSGIPythonHome "c:/users/juliana thayil/appdata/local/programs/python/python36"
WSGIPythonPath "C:/wamp64/www/miniproject"
<VirtualHost *:80>
ServerName localhost
DocumentRoot c:/wamp64/www
WSGIScriptAlias /miniproject c:/wamp64/www/miniproject/web.wsgi
<Directory c:/wamp64/www/miniproject>
require all granted
</Directory>
</VirtualHost>